Concept explainers
(a)
The mass of the ice that melts.
(a)
Answer to Problem 20.76AP
The mass of the ice that melts is
Explanation of Solution
Given info: The mass of the copper block is
Write the expression for the change in kinetic energy of the block.
Here,
Substitute
Thus, the change in kinetic energy of the block is
Write the expression for the change in internal energy.
Here,
Substitute
Write the expression for the conservation of energy for the isolated copper ice system.
Here,
Substitute
Conclusion:
Therefore, the mass of the ice that melts is
(b)
The input energy, the change in internal energy and the change in mechanical energy for the block-ice system.
(b)
Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the air is
Write the expression for the change in mechanical energy of the block.
From part (a), change in kinetic energy of the block is
Substitute
Conclusion:
Therefore, the input energy is
(c)
The input energy and the change in internal energy for the ice as a system.
(c)
Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the ice is
From equation (1), the expression for the change in internal energy.
From part (a), the mass of the ice that melts is
Substitute
Conclusion:
Therefore, the input energy is
(d)
The mass of the ice that melts.
(d)
Answer to Problem 20.76AP
The mass of the ice that melts is
Explanation of Solution
Given info: The mass of the copper block is
Write the expression for the change in kinetic energy of the block.
Here,
Substitute
Thus, the change in kinetic energy of the block is
Write the expression for the change in internal energy.
Here,
Substitute
Write the expression for the conservation of energy for the isolated copper ice system.
Here,
Substitute
Conclusion:
Therefore, the mass of the ice that melts is
(e)
The input energy and the change in internal energy for the block of ice as a system and
(e)
Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the block of the ice is
From equation (1), the expression for the change in internal energy.
From part (a), the mass of the ice that melts is
Substitute
Thus, the change in internal energy for the block of ice as a system is
Write the expression for the change in mechanical energy for the block-ice system.
From part (a), change in kinetic energy of the block is
Substitute
Conclusion:
Therefore, the input energy is
(f)
The input energy and the change in internal energy for the metal sheet as a system.
(f)
Answer to Problem 20.76AP
The input energy for the metal sheet as a system is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the metal sheet is
Conclusion:
Therefore, the input energy for the metal sheet as a system is
(g)
The change in temperature of both objects.
(g)
Answer to Problem 20.76AP
The change in temperature of both objects is
Explanation of Solution
Given info: The mass of the copper slab is
Write the expression for the change in kinetic energy of the copper slab.
Here,
Substitute
Thus, the change in kinetic energy of the copper slab is
Write the expression for the change in internal energy.
Substitute
Thus, the change in internal energy of the copper slab is
Write the expression for the change in internal energy due to the temperature change.
Here,
Substitute
Conclusion:
Therefore, the change in temperature of both objects is
(i)
The input energy and the change in internal energy for the stationary slab.
(i)
Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper slab is
The temperature of the stationary slab is
Conclusion:
Therefore, the input energy is
Want to see more full solutions like this?
Chapter 20 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvotearrow_forward1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward
- 3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forward
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College