For the given reaction the standard equilibrium K value has to be calculated at 298 K . H C N ( a q ) + N a O H ( a q ) ⇌ N a C N ( a q ) + H 2 O ( l ) Concept introduction: Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G . All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG ° rxn ) is the difference in free energy of the reactants and products in their standard state. ΔG ° rxn = ∑ mΔG f ° (Products)- ∑ nΔG f ° (Reactants) Where, nΔG f ° ( Reactants ) is the standard entropy of the reactants mΔG f ° ( products ) is the standard free energy of the products Free energy change ΔG : change in the free energy takes place while reactants convert to product where both are in standard state. It depends on the equilibrium constant K ΔG = ΔG o + RT ln ( K ) ΔG o = ΔH o − TΔS o Where, T is the temperature ΔG is the free energy ΔG o , ΔH o and ΔS o is standard free energy, enthalpy and entropy values.
For the given reaction the standard equilibrium K value has to be calculated at 298 K . H C N ( a q ) + N a O H ( a q ) ⇌ N a C N ( a q ) + H 2 O ( l ) Concept introduction: Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G . All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG ° rxn ) is the difference in free energy of the reactants and products in their standard state. ΔG ° rxn = ∑ mΔG f ° (Products)- ∑ nΔG f ° (Reactants) Where, nΔG f ° ( Reactants ) is the standard entropy of the reactants mΔG f ° ( products ) is the standard free energy of the products Free energy change ΔG : change in the free energy takes place while reactants convert to product where both are in standard state. It depends on the equilibrium constant K ΔG = ΔG o + RT ln ( K ) ΔG o = ΔH o − TΔS o Where, T is the temperature ΔG is the free energy ΔG o , ΔH o and ΔS o is standard free energy, enthalpy and entropy values.
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 20, Problem 20.69P
(a)
Interpretation Introduction
Interpretation:
For the given reaction the standard equilibrium K value has to be calculated at 298K.
HCN(aq)+NaOH(aq)⇌NaCN(aq)+H2O(l)
Concept introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.
ΔG°rxn=∑mΔGf°(Products)-∑nΔGf°(Reactants)
Where,
nΔGf°(Reactants) is the standard entropy of the reactants
mΔGf°(products) is the standard free energy of the products
Free energy changeΔG: change in the free energy takes place while reactants convert to product where both are in standard state. It depends on the equilibrium constant K
ΔG =ΔGo+RTln(K)ΔGo=ΔHo−TΔSo
Where,
T is the temperature
ΔG is the free energy
ΔGo, ΔHo and ΔSo is standard free energy, enthalpy and entropy values.
(b)
Interpretation Introduction
Interpretation:
For the given reaction the standard equilibrium K value has to be calculated at 298K.
SrSO4(s)⇌Sr2+(aq)+SO42−(aq)
Concept introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.
ΔG°rxn=∑mΔGf°(Products)-∑nΔGf°(Reactants)
Where,
nΔGf°(Reactants) is the standard entropy of the reactants
mΔGf°(products) is the standard free energy of the products
Free energy changeΔG: change in the free energy takes place while reactants convert to product where both are in standard state. It depends on the equilibrium constant K
ΔG =ΔGo+RTln(K)ΔGo=ΔHo−TΔSo
Where,
T is the temperature
ΔG is the free energy
ΔGo, ΔHo and ΔSo is standard free energy, enthalpy and entropy values.
app aktv.com
Curved arrows are used to illustrate the flow of electrons. Using
the provided starting and product structures, draw the curved
electron-pushing arrows for the following reaction or
mechanistic step(s).
Be sure to account for all bond-breaking and bond-making
steps.
:0:
0:0
H
NaO
Select to Add Arrows
CH3CH2CCNa
Problem 31 of 35
Please select a
K
Sepp aktiv com
Curved arrows are used to illustrate the flow of electrons. Using
the provided starting and product structures, draw the curved
electron-pushing arrows for the following reaction or
mechanistic step(s).
Be sure to account for all bond-breaking and bond-making
steps.
Drawing Arrows
CH3CH2OK, CH3CH2OH
Altis Learning App
31
Problem 28 of 35
H.
:0:
H
H
H
H
H
0:0
H
KO
Undo
Reset
Done
Q1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for
each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and
B? How about the diastereomers (A versus C or B versus C)?
enantiomers
H_ Br
(S) CH 3
H3C (S)
H Br
A
H Br
省
H3C (S) (R) CH₂
Br H
C
H Br
H3C (R)
B
(R)CH3
H Br
H Br
H3C (R)
(S) CH3
Br H
D
identical
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY