For the given reaction entropy value ΔG o has to be calculated at 298 K 2 H 2 S ( g ) + 2 O 2 ( s ) ⇌ 2 H 2 O ( s ) + S O 2 ( g ) ; K = 6.57 × 10 173 Concept introduction: Standard free energy change: Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system. ΔG o = ΔH o - TΔS o where, ΔG o - standard free energy change ΔH o - standard enthalpy change ΔS o - standard entropy change and T - temperature . Relationship between Δ G o a n d K : The relationship between free energy change and equilibrium constant is given by ΔG o = -RTlnK where, ΔG o - standard free energy change R - gas constant 8 .314 J/mol × K T - temperature 298K K - equilibrium constant .
For the given reaction entropy value ΔG o has to be calculated at 298 K 2 H 2 S ( g ) + 2 O 2 ( s ) ⇌ 2 H 2 O ( s ) + S O 2 ( g ) ; K = 6.57 × 10 173 Concept introduction: Standard free energy change: Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system. ΔG o = ΔH o - TΔS o where, ΔG o - standard free energy change ΔH o - standard enthalpy change ΔS o - standard entropy change and T - temperature . Relationship between Δ G o a n d K : The relationship between free energy change and equilibrium constant is given by ΔG o = -RTlnK where, ΔG o - standard free energy change R - gas constant 8 .314 J/mol × K T - temperature 298K K - equilibrium constant .
For the given reaction entropy value ΔGo has to be calculated at 298K
2H2S(g)+2O2(s)⇌2H2O(s)+SO2(g);K=6.57×10173
Concept introduction:
Standard free energy change:
Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system.
For the given reaction entropy value ΔGo has to be calculated at 298K
H2SO4(l)⇌H2O(l)+SO3(g);K=4.46×10−15
Concept introduction:
Standard free energy change:
Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system.
Please predict the products for each of the
following reactions.
Clearly show the regiochemistry (Markovnikov
vs anti-Markovnikov) and stereochemistry
(syn- vs anti- or both).
If a mixture of enantiomers is formed, please
draw all the enantiomers.
Hint: In this case you must choose the best
answer to demonstrate the stereochemistry of
H2 addition.
1.03
2. (CH3)2S
BIZ
CH₂OH
2. DMS
KMnO4, NaOH
ΖΗ
Pd or Pt (catalyst)
HBr
20 1
HBr
ROOR (peroxide)
HO
H-SO
HC
12 11 10
BH, THE
2. H2O2, NaOH
Brz
cold
HI
19
18
17
16
MCPBA
15
14
13
A
Br
H₂O
BH3⚫THF
Brz
EtOH
Pd or Ni (catalyst)
D₂ (deuterium)
1. Os04
2. H2O2
CH3CO3H
(peroxyacid)
1. MCPBA
2. H₂O*
H
B
+
H
H
H
"H
C
H
H
D
Explain how Beer’s Law can be used to determine the concentration in a selected food sample. Provide examples.
Explain the importance of having a sampling plan with respect to food analysis.
Explain the importance of having a sampling plan with respect to food analysis. Provide examples.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY