EBK CHEMISTRY: ATOMS FIRST
EBK CHEMISTRY: ATOMS FIRST
3rd Edition
ISBN: 8220103675505
Author: Burdge
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 20.66QP

(a)

Interpretation Introduction

Interpretation: For the given species, binding energy per nucleon should be determined.

Concept Introduction:

  • Energy required to break the nucleus into its corresponding proton and neutron is called nuclear binding energy
  • This quantity represents the conversion of mass to energy occurs during an exothermic reaction.
  • Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

    Where, (Δm) is called mass defect.

  • The difference between mass of an atom and the sum of the masses of its proton, electron, and neutron is called Mass defect

To determine: Binding energy per nucleon for the given

(a)

Expert Solution
Check Mark

Answer to Problem 20.66QP

The nuclear binding energy for 10B is  1.040×10-12J/nucleon

Explanation of Solution

For the given 10B , there are5 protons and 5 neutrons.

Massofprotons=1.00728amuMassof5protons=1.00728×5=5.0364amuMassofelectrons=5.4858×10-4amuMassof5electrons=5×5.4858×10-4amu=2.7429×103amuMassofneutron=1.008665amuMassof5neutron=5×1.008665amu=5.043325amuSo,predictedmassfor10Bis5.0364amu+2.7429×103amu+5.043325amu=10.0824679amuMassof 10Bis10.0129amuMassdefect=Atomicmass-MP+Me+Mn=10.0129amu-10.0824679amu=-0.0695679amuSince,1kg=6.022×1026amuΔm=-0.0695679amu6.022×1026amu=-1.15522916×1028kg

The binding energy

Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

C=velocity of light is 2.99792458×108m/s

ΔE =(Δm)c2ΔE=-1.15522916 ×10-28kg×(2.99792458×108m/s)2=1.03826819×10-11kg.m2/s2=1.03826819×10-11JNucearbindingenergypernucleon=1.03826819×10-11J10nucleon=1.040×10-12J/nucleon

(b)

Interpretation Introduction

Interpretation: For the given species, binding energy per nucleon should be determined.

Concept Introduction:

  • Energy required to break the nucleus into its corresponding proton and neutron is called nuclear binding energy
  • This quantity represents the conversion of mass to energy occurs during an exothermic reaction.
  • Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

    Where, (Δm) is called mass defect.

  • The difference between mass of an atom and the sum of the masses of its proton, electron, and neutron is called Mass defect

To determine: Binding energy per nucleon for the given

(b)

Expert Solution
Check Mark

Answer to Problem 20.66QP

The nuclear binding energy for 11B is 1.111×10-12J/nucleon

Explanation of Solution

For the given 11B , there are5 protons and 6 neutrons.

Massofprotons=1.00728amuMassof5protons=1.00728×5=5.0364amuMassofelectrons=5.4858×10-4amuMassof5electrons=5×5.4858×10-4amu=2.7429×103amuMassofneutron=1.008665amuMassof6neutron=6×1.008665amu=6.05199amuSo,predictedmassfor11Bis5.0364amu+2.7429×103amu+6.05199amu=11.0911329amuMassof 10Bis11.009305amuMassdefect=Atomicmass-MP+Me+Mn=11.009305amu-11.0911329amu=-0.0818279amuSince,1kg=6.022×1026amuΔm=-0.0818279amu6.022×1026amu=-1.358816008×1028kg

The binding energy

Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

C=velocity of light is 2.99792458×108m/s

ΔE =(Δm)c2ΔE=-1.358816008 ×10-28kg×(2.99792458×108m/s)2=1.2212429×10-11kg.m2/s2=1.2212429×10-11JNucearbindingenergypernucleon=1.2212429×10-11J11nucleon=1.11×10-12J/nucleon

(c)

Interpretation Introduction

Interpretation: For the given species, binding energy per nucleon should be determined.

Concept Introduction:

  • Energy required to break the nucleus into its corresponding proton and neutron is called nuclear binding energy
  • This quantity represents the conversion of mass to energy occurs during an exothermic reaction.
  • Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

    Where, (Δm) is called mass defect.

  • The difference between mass of an atom and the sum of the masses of its proton, electron, and neutron is called Mass defect

To determine: Binding energy per nucleon for the given

(c)

Expert Solution
Check Mark

Answer to Problem 20.66QP

The nuclear binding energy for 14N   is 1.199×10-12J/nucleon

Explanation of Solution

For the given 14N , there are7 protons and 7 neutrons.

Massofprotons=1.00728amuMassof7protons=1.00728×7=7.05096amuMassofelectrons=5.4858×10-4amuMassof7electrons=5.4858×10-4amu=3.84006×103amuMassofneutron=1.008665amuMassof7neutron=7×1.008665amu=7.060655amuSo,predictedmassfor14Nis7.05096amu+3.84006×103amu+7.060655amu=14.11545506amuMassof 14Nis14.003074amuMassdefect=Atomicmass-MP+Me+Mn=14.003074amu-14.11545506amu=-0.11238106amuSince,1kg=6.022×1026amuΔm=-0.11238106amu6.022×1026amu=-1.866175025×1028kg

The binding energy

Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

C=velocity of light is 2.99792458×108m/s

ΔE =(Δm)c2ΔE=-1.866175 ×10-28kg×(2.99792458×108m/s)2=1.677234468×10-11kg.m2/s2=1.677234468×10-11JNucearbindingenergypernucleon=1.677234468×10-11J14nucleon=1.199×10-12J/nucleon

(d)

Interpretation Introduction

Interpretation: For the given species, binding energy per nucleon should be determined.

Concept Introduction:

  • Energy required to break the nucleus into its corresponding proton and neutron is called nuclear binding energy
  • This quantity represents the conversion of mass to energy occurs during an exothermic reaction.
  • Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

    Where, (Δm) is called mass defect.

  • The difference between mass of an atom and the sum of the masses of its proton, electron, and neutron is called Mass defect

To determine: Binding energy per nucleon for the given

(d)

Expert Solution
Check Mark

Answer to Problem 20.66QP

The nuclear binding energy for 56Fe is 1.410×10-12J/nucleon

Explanation of Solution

For the given 56Fe , there are26 protons and 30 neutrons.

Massofprotons=1.00728amuMassof26protons=1.00728×26=26.18928amuMassofelectrons=5.4858×10-4amuMassof26electrons=26×5.4858×10-4amu=0.01426308amuMassofneutron=1.008665amuMassof30neutron=30×1.008665amu=30.25995amuSo,predictedmassfor56Feis26.18928amu+0.01426308amu+30.25995amu=56.4634amuMassof 56Feis55.93494amuMassdefect=Atomicmass-MP+Me+Mn=55.93494amu-56.4634amu=-0.52855308amuSince,1kg=6.022×1026amuΔm=-0.52855308amu6.022×1026amu=-8.77698×10-28kg

The binding energy

Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is, ΔE =(Δm)c2

C=velocity of light is 2.99792458×108m/s

ΔE =(Δm)c2ΔE=-8.77698×10-28kg×(2.99792458×108m/s)2=7.887475×10-11kg.m2/s2=7.887475×10-11JNucearbindingenergypernucleon=7.887475×10-11J56nucleon=1.40×10-12J/nucleon

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Which carbocation is more stable?
Are the products of the given reaction correct?  Why or why not?
The question below asks why the products shown are NOT the correct products.  I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products.  That's the opposite of what the question was asking.  Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates").  In other words, why is HCl added to the terminal alkene rather than the internal alkene?

Chapter 20 Solutions

EBK CHEMISTRY: ATOMS FIRST

Ch. 20.2 - Prob. 20.2.2SRCh. 20.2 - What is the change in mass (in ka) for the...Ch. 20.3 - Prob. 20.3WECh. 20.3 - Prob. 3PPACh. 20.3 - Prob. 3PPBCh. 20.3 - Prob. 20.4WECh. 20.3 - Prob. 4PPACh. 20.3 - Prob. 20.3.1SRCh. 20.3 - Prob. 20.3.2SRCh. 20.4 - Prob. 20.5WECh. 20.4 - Prob. 5PPACh. 20.4 - Prob. 5PPBCh. 20.4 - Prob. 5PPCCh. 20.4 - Prob. 20.4.1SRCh. 20.4 - Prob. 20.4.2SRCh. 20 - Prob. 20.1QPCh. 20 - Prob. 20.2QPCh. 20 - Prob. 20.3QPCh. 20 - Prob. 20.4QPCh. 20 - Prob. 20.5QPCh. 20 - Prob. 20.6QPCh. 20 - Prob. 20.7QPCh. 20 - Prob. 20.8QPCh. 20 - Prob. 20.9QPCh. 20 - Prob. 20.10QPCh. 20 - Prob. 20.11QPCh. 20 - Prob. 20.12QPCh. 20 - Prob. 20.13QPCh. 20 - Prob. 20.14QPCh. 20 - Prob. 20.15QPCh. 20 - Prob. 20.16QPCh. 20 - Prob. 20.17QPCh. 20 - Prob. 20.18QPCh. 20 - Prob. 20.19QPCh. 20 - Prob. 20.20QPCh. 20 - Prob. 20.21QPCh. 20 - Prob. 20.22QPCh. 20 - Prob. 20.23QPCh. 20 - Prob. 20.24QPCh. 20 - Prob. 20.25QPCh. 20 - Prob. 20.26QPCh. 20 - Prob. 20.27QPCh. 20 - Prob. 20.28QPCh. 20 - Prob. 20.29QPCh. 20 - Prob. 20.30QPCh. 20 - Prob. 20.31QPCh. 20 - Prob. 20.32QPCh. 20 - Prob. 20.33QPCh. 20 - Prob. 20.34QPCh. 20 - Prob. 20.35QPCh. 20 - Prob. 20.36QPCh. 20 - Prob. 20.37QPCh. 20 - Prob. 20.38QPCh. 20 - Prob. 20.39QPCh. 20 - Prob. 20.1VCCh. 20 - Prob. 20.3VCCh. 20 - Prob. 20.4VCCh. 20 - Prob. 20.40QPCh. 20 - Prob. 20.41QPCh. 20 - Prob. 20.42QPCh. 20 - Prob. 20.43QPCh. 20 - Prob. 20.44QPCh. 20 - Prob. 20.45QPCh. 20 - Prob. 20.46QPCh. 20 - Prob. 20.47QPCh. 20 - Prob. 20.48QPCh. 20 - Prob. 20.49QPCh. 20 - Prob. 20.50QPCh. 20 - Prob. 20.51QPCh. 20 - Prob. 20.52QPCh. 20 - Prob. 20.53QPCh. 20 - Prob. 20.54QPCh. 20 - Prob. 20.55QPCh. 20 - Prob. 20.56QPCh. 20 - Prob. 20.57QPCh. 20 - Prob. 20.58QPCh. 20 - Prob. 20.59QPCh. 20 - Prob. 20.60QPCh. 20 - Prob. 20.61QPCh. 20 - Prob. 20.62QPCh. 20 - Prob. 20.63QPCh. 20 - Prob. 20.64QPCh. 20 - Prob. 20.65QPCh. 20 - Prob. 20.66QPCh. 20 - Prob. 20.67QPCh. 20 - Prob. 20.68QPCh. 20 - Prob. 20.69QPCh. 20 - Prob. 20.70QPCh. 20 - Prob. 20.71QPCh. 20 - Prob. 20.72QPCh. 20 - Prob. 20.73QPCh. 20 - Prob. 20.74QPCh. 20 - Prob. 20.75QPCh. 20 - Prob. 20.76QPCh. 20 - Prob. 20.77QPCh. 20 - Prob. 20.78QPCh. 20 - Prob. 20.79QPCh. 20 - Prob. 20.80QPCh. 20 - Prob. 20.81QPCh. 20 - Prob. 20.82QPCh. 20 - Prob. 20.83QPCh. 20 - Prob. 20.84QPCh. 20 - Prob. 20.85QPCh. 20 - Prob. 20.86QPCh. 20 - Prob. 20.87QPCh. 20 - Prob. 20.88QPCh. 20 - Prob. 20.89QPCh. 20 - Prob. 20.90QPCh. 20 - Prob. 20.91QPCh. 20 - Prob. 20.92QPCh. 20 - Prob. 20.93QPCh. 20 - Prob. 20.94QPCh. 20 - Prob. 20.95QPCh. 20 - Prob. 20.96QPCh. 20 - Prob. 20.97QPCh. 20 - Prob. 20.98QPCh. 20 - Prob. 20.99QPCh. 20 - Prob. 20.100QPCh. 20 - Prob. 20.101QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning