
(a)
Interpretation: For the given reactions, abbreviated forms should be written.
Concept Introduction:
- Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.
Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.
To write: The abbreviated form of the given nuclear reaction
(a)

Answer to Problem 20.37QP
Explanation of Solution
Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses. Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively. So for the nuclear reaction, short hand notation will be in this form that is,
For the given nuclear reaction b,
So, the shorthand notation for the given reaction is,
(b)
Interpretation: For the given reactions, abbreviated forms should be written.
Concept Introduction:
- Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.
Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.
To write: The abbreviated form of the given nuclear reaction
(b)

Answer to Problem 20.37QP
Explanation of Solution
Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses. Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively. So for the nuclear reaction, short hand notation will be in this form that is,
For the given nuclear reaction b,
So, the shorthand notation for the given reaction is,
(c)
Interpretation: For the given reactions, abbreviated forms should be written.
Concept Introduction:
- Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.
Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.
To write: The abbreviated form of the given nuclear reaction
(c)

Answer to Problem 20.37QP
Explanation of Solution
Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses. Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively. So for the nuclear reaction, short hand notation will be in this form that is,
For the given nuclear reaction c,
So, the shorthand notation for the given reaction is,
Want to see more full solutions like this?
Chapter 20 Solutions
EBK CHEMISTRY: ATOMS FIRST
- Use diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward15) Create Lewis structure Br Brarrow_forward
- LIOT S How would you make 200. mL of a 0.5 M solution of CuSO4 5H2O from solid copper (II) sulfate? View Rubricarrow_forwardSteps and explantions pleasearrow_forwardMatch the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forward
- Can you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





