EBK GET READY FOR ORGANIC CHEMISTRY
EBK GET READY FOR ORGANIC CHEMISTRY
2nd Edition
ISBN: 8220100576379
Author: KARTY
Publisher: PEARSON
Question
Book Icon
Chapter 20, Problem 20.47P
Interpretation Introduction

(a)

Interpretation:

The product with detailed mechanism for the given reaction is to be predicted by identifying whether the reaction has occurred or not.

Concept introduction:

NaBH4 is the reducing agent that mainly reduces carbonyls to alcohols. NaBH4 is not that strong reducing agent, and thus, cannot reduce the amide carbonyls.

Interpretation Introduction

(b)

Interpretation:

The product with detailed mechanism for the given reaction is to be predicted by identifying whether the reaction has occurred or not.

Concept introduction:

LiAlH4 is the reducing agent that mainly reduces carbonyls to alcohols. LiAlH4 is a strong reducing agent, and thus can reduce the amide to corresponding amine in solvent THF.

Interpretation Introduction

(c)

Interpretation:

The product with detailed mechanism for the given reaction is to be predicted by identifying whether the reaction has occurred or not.

Concept introduction:

NaBH4 is the reducing agent mainly reduces carbonyls to alcohols. NaBH4 is not that strong reducing agent, and thus cannot reduce the carboxylic acid’s carbonyls, rather it deprotonates it to carboxylate ion.

Interpretation Introduction

(b)

Interpretation:

The product with detailed mechanism for the given reaction is to be predicted by identifying whether the reaction has occurred or not.

Concept introduction:

LiAlH4 is the reducing agent mainly reduces carbonyls to alcohols. LiAlH4 is a strong reducing agent, and thus can reduce the carboxylic acid to aldehyde which on further reduction gives primary alcohol.

Blurred answer
Students have asked these similar questions
Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. 0.035 atm ✓ G 00. 18 Ar
Highlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area. HO- HO- -0 OH OH HO NG HO- HO- OH OH OH OH NG OH
€ + Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn it into the product of the reaction. Also, write the name of the product molecule under the drawing area. Name: ☐ H C=0 X H- OH HO- H HO- -H CH₂OH ×

Chapter 20 Solutions

EBK GET READY FOR ORGANIC CHEMISTRY

Ch. 20 - Prob. 20.11PCh. 20 - Prob. 20.12PCh. 20 - Prob. 20.13PCh. 20 - Prob. 20.14PCh. 20 - Prob. 20.15PCh. 20 - Prob. 20.16PCh. 20 - Prob. 20.17PCh. 20 - Prob. 20.18PCh. 20 - Prob. 20.19PCh. 20 - Prob. 20.20PCh. 20 - Prob. 20.21PCh. 20 - Prob. 20.22PCh. 20 - Prob. 20.23PCh. 20 - Prob. 20.24PCh. 20 - Prob. 20.25PCh. 20 - Prob. 20.26PCh. 20 - Prob. 20.27PCh. 20 - Prob. 20.28PCh. 20 - Prob. 20.29PCh. 20 - Prob. 20.30PCh. 20 - Prob. 20.31PCh. 20 - Prob. 20.32PCh. 20 - Prob. 20.33PCh. 20 - Prob. 20.34PCh. 20 - Prob. 20.35PCh. 20 - Prob. 20.36PCh. 20 - Prob. 20.37PCh. 20 - Prob. 20.38PCh. 20 - Prob. 20.39PCh. 20 - Prob. 20.40PCh. 20 - Prob. 20.41PCh. 20 - Prob. 20.42PCh. 20 - Prob. 20.43PCh. 20 - Prob. 20.44PCh. 20 - Prob. 20.45PCh. 20 - Prob. 20.46PCh. 20 - Prob. 20.47PCh. 20 - Prob. 20.48PCh. 20 - Prob. 20.49PCh. 20 - Prob. 20.50PCh. 20 - Prob. 20.51PCh. 20 - Prob. 20.52PCh. 20 - Prob. 20.53PCh. 20 - Prob. 20.54PCh. 20 - Prob. 20.55PCh. 20 - Prob. 20.56PCh. 20 - Prob. 20.57PCh. 20 - Prob. 20.58PCh. 20 - Prob. 20.59PCh. 20 - Prob. 20.60PCh. 20 - Prob. 20.61PCh. 20 - Prob. 20.62PCh. 20 - Prob. 20.63PCh. 20 - Prob. 20.64PCh. 20 - Prob. 20.65PCh. 20 - Prob. 20.66PCh. 20 - Prob. 20.67PCh. 20 - Prob. 20.68PCh. 20 - Prob. 20.69PCh. 20 - Prob. 20.70PCh. 20 - Prob. 20.71PCh. 20 - Prob. 20.1YTCh. 20 - Prob. 20.2YTCh. 20 - Prob. 20.3YTCh. 20 - Prob. 20.4YTCh. 20 - Prob. 20.5YTCh. 20 - Prob. 20.6YTCh. 20 - Prob. 20.7YTCh. 20 - Prob. 20.8YTCh. 20 - Prob. 20.9YTCh. 20 - Prob. 20.10YTCh. 20 - Prob. 20.11YTCh. 20 - Prob. 20.12YTCh. 20 - Prob. 20.13YT
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning