Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 20.1QQ

(a)

To determine

The order of the samples from highest to lowest temperature.

(a)

Expert Solution
Check Mark

Answer to Problem 20.1QQ

The temperature order is iron>glass>water .

Explanation of Solution

Given info: The mass of each sample is 1.0kg temperature of each sample is 10.0°C . The energy given to each sample is 100J

The specific heat of iron is 448J/kg°C , the specific heat of water is 4186J/kg°C , the specific heat of glass is 837J/kg°C

The formula to calculate energy is,

E=mcΔT (1)

Here,

E is the energy.

m is the mass of the sample.

ΔT is the change in the temperature.

c is the specific heat of the sample.

From equation (1), formula to calculate the change in the temperature is

E=mcΔTΔT=Emc (2)

Form equation (2), the change is temperature is inversely proportional to the specific heat. So larger the specific heat smaller is the change in temperature.

The specific heat of water is highest so the temperature change is the smallest. The specific heat of glass is less than water but greater than water so temperatures change in glass will be more than water but less than iron and the specific heat of iron is least so the temperature change in iron is most.

Conclusion:

Therefore, temperature order is iron>glass>water .

(b)

To determine

The rank of the samples from greatest to least amount of energy.

(b)

Expert Solution
Check Mark

Answer to Problem 20.1QQ

The order from greatest to least energy transferred is water>glass>iron .

Explanation of Solution

Given info: The mass of each sample is 1.0kg temperature of each sample is raised to 20.0°C . The energy given to each sample is 100J

The specific heat of iron is 448J/kg°C , the specific heat of water is 4186J/kg°C and the specific heat of glass is 837J/kg°C

The formula to calculate energy is,

E=mcΔT (3)

Here,

E is the energy.

m is the mass of the sample.

ΔT is the change in the temperature.

c is the specific heat of the sample.

Form equation (3), the energy of the sample is directly proportional to the specific heat of the sample as the mass of each sample and temperature change in the samples are same.

The higher is the specific heat higher the energy will be transferred into the sample for the given temperature increase. So the energy of water will be greatest as it has highest specific heat capacity then the energy of the glass as it has second highest specific heat capacity and then the energy will be least in iron as it has specific heat lowest.

Conclusion:

Therefore, the order from greatest to least energy transferred will be water>glass>iron .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls
Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μF
the answer is not 0.39 or 0.386

Chapter 20 Solutions

Physics for Scientists and Engineers, Volume 1, Chapters 1-22

Ch. 20 - Ethyl alcohol has about one-half the specific heat...Ch. 20 - The specific heat of substance A is greater than...Ch. 20 - Beryllium has roughly one-half the specific heat...Ch. 20 - Prob. 20.9OQCh. 20 - A 100-g piece of copper, initially at 95.0C, is...Ch. 20 - Prob. 20.11OQCh. 20 - If a gas is compressed isothermally, which of the...Ch. 20 - Prob. 20.13OQCh. 20 - If a gas undergoes an isobaric process, which of...Ch. 20 - Prob. 20.15OQCh. 20 - Prob. 20.1CQCh. 20 - You need to pick up a very hot cooking pot in your...Ch. 20 - Prob. 20.3CQCh. 20 - Prob. 20.4CQCh. 20 - Prob. 20.5CQCh. 20 - In 1801, Humphry Davy rubbed together pieces of...Ch. 20 - Prob. 20.7CQCh. 20 - Prob. 20.8CQCh. 20 - Prob. 20.9CQCh. 20 - When camping in a canyon on a still night, a...Ch. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 20.12CQCh. 20 - Prob. 20.1PCh. 20 - Consider Joules apparatus described in Figure...Ch. 20 - Prob. 20.3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - What mass of water at 25.0C must be allowed to...Ch. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - In cold climates, including the northern United...Ch. 20 - A 50.0-g sample of copper is at 25.0C. If 1 200 J...Ch. 20 - An aluminum cup of mass 200 g contains 800 g of...Ch. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 20 - An electric drill with a steel drill bit of mass m...Ch. 20 - An aluminum calorimeter with a mass of 100 g...Ch. 20 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 20 - Two thermally insulated vessels are connected by a...Ch. 20 - A 50.0-g copper calorimeter contains 250 g of...Ch. 20 - Prob. 20.17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - A 75.0-g ice cube at 0C is placed in 825 g of...Ch. 20 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 20 - Steam at 100C is added to ice at 0C. (a) Find the...Ch. 20 - A 1.00-kg Mock of copper at 20.0C is dropped into...Ch. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 20.24PCh. 20 - An ideal gas is enclosed in a cylinder with a...Ch. 20 - Prob. 20.26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - (a) Determine the work done on a gas that expands...Ch. 20 - An ideal gas is taken through a quasi-static...Ch. 20 - A gas is taken through the cyclic process...Ch. 20 - Consider the cyclic process depicted in Figure...Ch. 20 - Why is the following situation impossible? An...Ch. 20 - A thermodynamic system undergoes a process in...Ch. 20 - A sample of an ideal gas goes through the process...Ch. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 20.37PCh. 20 - One mole of an ideal gas does 3 000 J of work on...Ch. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - In Figure P19.22, the change in internal energy of...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - A glass windowpane in a home is 0.620 cm thick and...Ch. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - A student is trying to decide what to wear. His...Ch. 20 - The surface of the Sun has a temperature of about...Ch. 20 - The tungsten filament of a certain 100-W lightbulb...Ch. 20 - At high noon, the Sun delivers 1 000 W to each...Ch. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 20.50PCh. 20 - A copper rod and an aluminum rod of equal diameter...Ch. 20 - A box with a total surface area of 1.20 m2 and a...Ch. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - At our distance from the Sun, the intensity of...Ch. 20 - A bar of gold (Au) is in thermal contact with a...Ch. 20 - Prob. 20.56PCh. 20 - Prob. 20.57PCh. 20 - A gas expands from I to Fin Figure P20.58 (page...Ch. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Liquid nitrogen has a boiling point of 77.3 K and...Ch. 20 - An aluminum rod 0.500 m in length and with a cross...Ch. 20 - Prob. 20.62APCh. 20 - Prob. 20.63APCh. 20 - Prob. 20.64APCh. 20 - Prob. 20.65APCh. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - On a cold winter day. you buy roasted chestnuts...Ch. 20 - Prob. 20.68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 20.70APCh. 20 - A 40.0-g ice cube floats in 200 g of water in a...Ch. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Review. A 670-kg meteoroid happens to be composed...Ch. 20 - Prob. 20.74APCh. 20 - Prob. 20.75APCh. 20 - Prob. 20.76APCh. 20 - Water in an electric teakettle is boiling. The...Ch. 20 - Prob. 20.78APCh. 20 - Prob. 20.79APCh. 20 - A student measures the following data in a...Ch. 20 - Consider the piston cylinder apparatus shown in...Ch. 20 - A spherical shell has inner radius 3.00 cm and...Ch. 20 - Prob. 20.83CPCh. 20 - (a) The inside of a hollow cylinder is maintained...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning