
For the battery of bulbs (purely resistive) appearing in Fig. 20.48 :
a. Determine the total power dissipation.
b. Calculate the total reactive and apparent power.
c. Find the source current Is.
d. Calculate the resistance of each bulb for the specified operating conditions.
e. Determine the currents I1 and I2.

(a)
The total power dissipation.
Answer to Problem 1P
The total power dissipated is
Explanation of Solution
Calculation:
The given circuit diagram is shown in Figure 1.
The power dissipated in bulb 1 is
The total power dissipation is given by the sum of power dissipated in individual bulbs, that is,
Here,
Substitute
Conclusion:
Therefore, the total power dissipated is

(b)
The total reactive and apparent power.
Answer to Problem 1P
The reactive power dissipated in the bulbs is
Explanation of Solution
Calculation:
As the bulbs are purely resistive in nature therefore, the reactive power dissipated in bulb is zero that is,
The apparent power is given by,
Substitute
Conclusion:
Therefore, the reactive power dissipated in bulb is

(c)
The source current
Answer to Problem 1P
The source current
Explanation of Solution
Calculation:
The source voltage
The apparent power is given by,
Substitute
Conclusion:
Therefore, the source current

(d)
The resistance of each bulb.
Answer to Problem 1P
The resistance of bulb 1 is
Explanation of Solution
Calculation:
The power dissipated in first bulb is given by,
Substitute
The voltage
Substitute
From the figure 1 it can be seen that voltage
Substitute
The power dissipated in bulb 2 is given by,
Substitute
The power dissipated in bulb 3 is given by,
Substitute
Conclusion:
Therefore, the resistance of bulb 1 is

(e)
The current
Answer to Problem 1P
The current
Explanation of Solution
Calculation:
The value of current
Substitute
The current
Substitute
Conclusion:
Therefore, the current
Want to see more full solutions like this?
Chapter 20 Solutions
Introductory Circuit Analysis (13th Edition)
Additional Engineering Textbook Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Concepts Of Programming Languages
Electric Circuits. (11th Edition)
Database Concepts (8th Edition)
BASIC BIOMECHANICS
Thermodynamics: An Engineering Approach
- Q2: Using minimum number of D flip-flops, design a synchrounus counter. The counter counts in the sequence 0,15,2,7,0,15,....... When its enable input x is equal to 1; otherwise the counter is idle.arrow_forwardDesign a synchronous Up/Down counter to produce the following sequence (4 9 2,0,7,6,3,1,5) using T flip-flop. The counter should count up when Up/Down =1, and down when Up/Down = 0.arrow_forwardCan you elaborate on how to determine the direction along with solving the requirements? A uniform plane wave propagation in media has: र E = 2 e sin (let-pz) ay Erol, Mr = 20, 6-35/m Find α, B, πarrow_forward
- Can you elaborate on how to determine the direction along with solving the requirements? in a lossless medium for which Robons Myst, and has; πl=- = - al cos (wt-z) ax +0.5 Silwt-z) ay Ahm Calculate Er, W, Earrow_forwardV/m the electric field in free space is given by E. 50 Cos [2π lot - B2] ay a) find the direction of the wave propagation b) Calculate W, B, A, Sarrow_forward4- magnetic medium Ex:- A plane wave in non-. (Mr=1) has: E. 50 Sin (10³t + 2Z) ay v/m a) direction of propagation and H- b) A, f, Er, dp Solution f Z хн Wave His in ax Wave is in az B=2, w=10 8 YE How?arrow_forward
- Can you elaborate on how to determine the direction along with solving the requirements? A plane wave in non- (Mr=t) has: magnetic medium E. 50 Sin (10³t + 2Z) ay v/m a) direction of propagann and H. b) A, f, Er, dp H&arrow_forwardB:Find the roots of the following equation using NR method at the end of second iteration.start with V-4, V2-8 V₁*V2-50.... (1) Vi+V2 =15... (2)arrow_forwardB:Find the roots of the following equation using NR method at the end of second iteration.start with V-4, V2S V₁*V2=50... V₁+V₂ =15 (1)arrow_forward
- a) Determine the setting of the overload protection of the circuit breaker intended to protect a 50hp, 380V, IV-pole motor, powered by a unipolar copper-PVC conductor circuit, with a cross-section of 25mm², installed in a buried conduit: The short-circuit current at the motor terminal is 5KA. It is assumed that the overload current of the conductor throughout its useful life is controlled and will not exceed 100 hours for 12 consecutive months or 500 hours throughout the useful life of the conductor. Data: fp = 0.86; efficiency = 0.92 a) Determine the minimum operating time of the circuit breaker in the event of a short-circuit at the motor terminals.arrow_forwardQ1:A: Derive four elements only of diagonals Jacobian matrix of NR method in polar coordinate for a system consist of 4 buses, bus 1 is slack and the other three buses are PQ buses.arrow_forwardPls show neat and whole solutionarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





