In a reaction involving the iodination of acetone, the following volumes were used to make up the reaction mixture:
a. How many moles of acetone were in the reaction mixture? Recall that, for a component A, moles
__________ moles acetone
b. What was the molarity of acetone in the reaction mixture? The volume of the mixture was 50 mL, 0.050 L, and the number of moles of acetone was found in Part (a). Again,
__________ M acetone
c. How could you double the molarity of the acetone in the reaction mixture, keeping the total volume at 50 mL and keeping the same concentrations of
(a)
Interpretation:
The reaction of iodination of acetone, forms a reaction mixture;
The moles of acetone are present in the reaction mixture should be determined.
Concept Introduction:
Mole is the amount of the substance that contains the same number of particles or atoms or molecules. Molar mass is defined as an average mass of atoms present in the chemical formula. It is the sum of the atomic masses of all the atoms present in the chemical formula of any compound.
Answer to Problem 1ASA
Moles of acetone = 0.02 mol
Explanation of Solution
Given information:
Molarity of acetone = 4 M
Molarity of HCl = 1M
Molarity of I2 = 0.0050 M
Volume of acetone = 5 mL
Volume of HCl = 10 mL
Volume of I2 = 10 mL
Volume of H2O = 25 mL
The calculation of moles of acetone is shown below:
(b)
Interpretation:
The reaction of iodination of acetone, forms a reaction mixture;
The molarity of acetone in the reaction mixture should be determined when volume of mixture is 50 mL
Concept Introduction:
Mole is the amount of the substance that contains the same number of particles or atoms or molecules. Molar mass is defined as an average mass of atoms present in the chemical formula. It is the sum of the atomic masses of all the atoms present in the chemical formula of any compound.
The ratio of moles to the volume in liters is known as molarity.
Answer to Problem 1ASA
Molarity of acetone = 0.4 M
Explanation of Solution
Given information:
Molarity of acetone = 4 M
Molarity of HCl = 1M
Molarity of I2 = 0.0050 M
Volume of acetone = 5 mL
Volume of HCl = 10 mL
Volume of I2 = 10 mL
Volume of H2O = 25 mL
The calculation of molarity of acetone is shown below:
(c)
Interpretation:
The reaction of iodination of acetone, forms a reaction mixture;
Keeping the total volume and concentration of H+ and I2 remains same; predict how the molarity of aceteone should be doubled.
Concept Introduction:
Mole is the amount of the substance that contains the same number of particles or atoms or molecules. Molar mass is defined as an average mass of atoms present in the chemical formula. It is the sum of the atomic masses of all the atoms present in the chemical formula of any compound.
Answer to Problem 1ASA
Explanation of Solution
If concentration of H+ and I2 remains the same then decreases the volume of H2O by 15 mL and increases the initial concentration of acetone with volume by 15 mL.
Want to see more full solutions like this?
Chapter 20 Solutions
EBK CHEMICAL PRINCIPLES IN THE LABORATO
- Please Help!!!arrow_forwardQ2: Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO2 NO3 Page 3 of 4 Chem 0310 Organic Chemistry 1 HW Problem Sets CH3NSO (Thionitromethane, skeleton on the right) H N H3C Sarrow_forwardA 10.00-mL pipet was filled to the mark with distilled water at the lab temperature of 22 oC. The water, delivered to a tared weighing bottle was found to weigh 9.973 g. The density of water at 22 oC is 0.99780 g/mL. Calculate the volume of the pipet in mL. (disregard air displacement for this calculation and record your answer to the proper number of significant digits.)arrow_forward
- Resonance Formsa) Draw all resonance forms of the molecules. Include curved arrow notation. Label majorresonance contributor.arrow_forwardShow work with explanation needed. Don't give Ai generated solutionarrow_forwardf) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H2C た C CH2 H2C H₂C * 120° C H2arrow_forward
- Denote the dipole for the indicated bonds in the following molecules. H3C CH3 B F-CCl3 Br-Cl | H3C Si(CH3)3 OH НО. HO H O HO OH vitamin C CH3arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardHow do I calculate the amount of quarks in magnesium?arrow_forward
- Please provide the mechanism for the reaction attached. Please include all arrows, intermediates, and formalcharges. If a Sigma complex, please draw all major resonance forms.arrow_forwardPredict the product or products for the following reactions. Please include both ortho and para substitutions, if it applies, and indicate the major product, if it applies.arrow_forwardThe bromination of naphthalene via electrophilic aromatic substitution. Please draw out all of the resonance structures created from addition at the C1 carbon. Please also draw out all of the resonance structures created from addition at the C2 carbon. Which carbon (C1 or C2) is more favored?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning