
a.
Find the expected monetary value for each decision.
a.

Answer to Problem 11CE
The expected monetary value for the decision neither is $0.
The expected monetary value for the decision product 1 only is $76.
The expected monetary value for the decision product 2 only is $67.5.
The expected monetary value for the decision both only is $129.
Explanation of Solution
From the given information, the probabilities for the state of nature are
Then, the expected monetary value for the decision neither is calculated as follows:
Thus, the expected monetary value for the decision neither is $0.
The expected monetary value for the decision product 1 only is calculated as follows:
Thus, the expected monetary value for the decision product 1 only is $76.
The expected monetary value for the decision product 2 only is calculated as follows:
Thus, the expected monetary value for the decision product 2 only is $67.5.
The expected monetary value for the decision both only is calculated as follows:
Thus, the expected monetary value for the decision both only is $129.
b.
Give the recommended decision.
b.

Answer to Problem 11CE
The decision neither would be recommended.
Explanation of Solution
The expected monetary value for the decision both is greater when compared to the other decisions. But, the risk of loss is minimum for the decision neither. Then, the recommended decision is neither.
Thus, the decision neither would be recommended.
c.
Construct an opportunity loss table.
c.

Answer to Problem 11CE
An opportunity loss table is
Decision | Opportunity loss | ||
Neither | 220 | 110 | 40 |
Product 1 only | 95 | 45 | 10 |
Product 2 only | 115 | 50 | 10 |
Both | 0 | 0 | 0 |
Explanation of Solution
The opportunity loss table is obtained as follows:
Decision | Opportunity loss | ||
Neither | |||
Product 1 only | |||
Product 2 only | |||
Both |
From the given table if the decision is neither, then the value is 0 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $220 and $0 That is,
Thus, the opportunity loss for the decision is neither, given a state of nature is
From the given table if the decision is product 1 only, then the value is 125 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $220 and $125 That is,
Thus, the opportunity loss for the decision is product 1 only, given a state of nature is
From the given table if the decision is product 2 only, then the value is 105 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $220 and $105 That is,
Thus, the opportunity loss for the decision is product 2 only, given a state of nature is
From the given table if the decision is both, then the value is 220 when the state of nature
Thus, the opportunity loss for the decision is both, given a state of nature is
From the given table if the decision is neither, then the value is 0 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $110 and $0 That is,
Thus, the opportunity loss for the decision is neither, given a state of nature is
From the given table if the decision is product 1 only, then the value is 65 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $110 and $65 That is,
Thus, the opportunity loss for the decision is product 1 only, given a state of nature is
From the given table if the decision is product 2 only, then the value is 60 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $110 and $60 That is,
Thus, the opportunity loss for the decision is product 2 only, given a state of nature is
From the given table if the decision is both, then the value is 110 when the state of nature
Thus, the opportunity loss for the decision is both, given a state of nature is
From the given table if the decision is neither, then the value is 0 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $40 and $0 That is,
Thus, the opportunity loss for the decision is neither, given a state of nature is
From the given table if the decision is product 1 only, then the value is 30 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $40 and $30 That is,
Thus, the opportunity loss for the decision is product 1 only, given a state of nature is
From the given table if the decision is product 2 only, then the value is 30 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $40 and $30 That is,
Thus, the opportunity loss for the decision is product 2 only, given a state of nature is
From the given table if the decision is both, then the value is 40 when the state of nature
Thus, the opportunity loss for the decision is both, given a state of nature is
d.
Find the expected opportunity loss for each decision.
d.

Answer to Problem 11CE
The expected opportunity loss for the decision neither is $129.
The expected opportunity loss for the decision product 1 only is $53.
The expected opportunity loss for the decision product 2 only is $61.5.
The expected opportunity loss for the decision both is $0.
Explanation of Solution
From the given information,
From the part c, the opportunity loss table is
Decision | Opportunity loss | ||
Neither | 220 | 110 | 40 |
Product 1 only | 95 | 45 | 10 |
Product 2 only | 115 | 50 | 10 |
Both | 0 | 0 | 0 |
Then, the expected opportunity loss for the decision neither is
Thus, the expected opportunity loss for the decision neither is $129.
The expected opportunity loss for the decision product 1 only is
Thus, the expected opportunity loss for the decision product 1 only is $53.
The expected opportunity loss for the decision product 2 only is
Thus, the expected opportunity loss for the decision product 2 only is $61.5.
The expected opportunity loss for the decision both is
Thus, the expected opportunity loss for the decision both is $0.
e.
Find the
e.

Answer to Problem 11CE
The expected value of perfect information is –6.
Explanation of Solution
The expected value of perfect information is obtained by taking the difference between the expected value under conditions of certainty and expected value under conditions of uncertainty.
From the opportunity loss table in the part c, in the state of nature
Thus, these are taken as the decisions.
The expected value under conditions of certainty is calculated as follows:
State of Nature | Decision | Payoff | Probability | Expected payoff |
Both | 200 | 0.30 | ||
Both | 110 | 0.50 | ||
Both | 40 | 0.20 |
Then, the expected value under conditions of certainty is obtained by adding 60, 55 and 8. That is,
Thus, the expected value under conditions of certainty is $123.
From the part d, the decision both is recommended, because its expected opportunity loss is less when compared to other decisions. From the part a, it’s expected payoff value is $129. This is the expected value under conditions of uncertainty.
The expected value of perfect information is
Thus, the expected value of perfect information is –6.
Want to see more full solutions like this?
Chapter 20 Solutions
Loose Leaf for Statistical Techniques in Business and Economics
- For a binary asymmetric channel with Py|X(0|1) = 0.1 and Py|X(1|0) = 0.2; PX(0) = 0.4 isthe probability of a bit of “0” being transmitted. X is the transmitted digit, and Y is the received digit.a. Find the values of Py(0) and Py(1).b. What is the probability that only 0s will be received for a sequence of 10 digits transmitted?c. What is the probability that 8 1s and 2 0s will be received for the same sequence of 10 digits?d. What is the probability that at least 5 0s will be received for the same sequence of 10 digits?arrow_forwardV2 360 Step down + I₁ = I2 10KVA 120V 10KVA 1₂ = 360-120 or 2nd Ratio's V₂ m 120 Ratio= 360 √2 H I2 I, + I2 120arrow_forwardQ2. [20 points] An amplitude X of a Gaussian signal x(t) has a mean value of 2 and an RMS value of √(10), i.e. square root of 10. Determine the PDF of x(t).arrow_forward
- In a network with 12 links, one of the links has failed. The failed link is randomlylocated. An electrical engineer tests the links one by one until the failed link is found.a. What is the probability that the engineer will find the failed link in the first test?b. What is the probability that the engineer will find the failed link in five tests?Note: You should assume that for Part b, the five tests are done consecutively.arrow_forwardProblem 3. Pricing a multi-stock option the Margrabe formula The purpose of this problem is to price a swap option in a 2-stock model, similarly as what we did in the example in the lectures. We consider a two-dimensional Brownian motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices are modeled by the following equations: dX = dY₁ = X₁ (rdt+ rdt+0₁dW!) (²)), Y₁ (rdt+dW+0zdW!"), with Xo xo and Yo =yo. This corresponds to the multi-stock model studied in class, but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure P is already the risk-neutral measure (Both stocks have rate of return r). We write σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to exchange one share of X for one share of Y. That is, the option has payoff F=(Yr-XT). (a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for the process Xt. Reminder before proceeding to question (b): Girsanov's theorem…arrow_forwardProblem 1. Multi-stock model We consider a 2-stock model similar to the one studied in class. Namely, we consider = S(1) S(2) = S(¹) exp (σ1B(1) + (M1 - 0/1 ) S(²) exp (02B(2) + (H₂- M2 where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with t≥0 Cov (B(¹), B(2)) = p min{t, s}. " The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian motion (W+)+20 (W(1), W(2))+20 such that = S(1) S(2) = = S(¹) exp (011W(¹) + (μ₁ - 01/1) t) 롱) S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t). where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p). Hint: The constants will follow the formulas developed in the lectures. (a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2) functions of (B(1), B(²)). as (b) Using the formulas obtained in (a), show that the process (WA) is actually a 2- dimensional standard Brownian motion (i.e. show that each component is normal, with mean 0, variance t, and that their…arrow_forward
- The scores of 8 students on the midterm exam and final exam were as follows. Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91 Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =arrow_forwardBusiness discussarrow_forwardBusiness discussarrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,




