
a.
Find the expected monetary value for each decision.
a.

Answer to Problem 11CE
The expected monetary value for the decision neither is $0.
The expected monetary value for the decision product 1 only is $76.
The expected monetary value for the decision product 2 only is $67.5.
The expected monetary value for the decision both only is $129.
Explanation of Solution
From the given information, the probabilities for the state of nature are
Then, the expected monetary value for the decision neither is calculated as follows:
Thus, the expected monetary value for the decision neither is $0.
The expected monetary value for the decision product 1 only is calculated as follows:
Thus, the expected monetary value for the decision product 1 only is $76.
The expected monetary value for the decision product 2 only is calculated as follows:
Thus, the expected monetary value for the decision product 2 only is $67.5.
The expected monetary value for the decision both only is calculated as follows:
Thus, the expected monetary value for the decision both only is $129.
b.
Give the recommended decision.
b.

Answer to Problem 11CE
The decision neither would be recommended.
Explanation of Solution
The expected monetary value for the decision both is greater when compared to the other decisions. But, the risk of loss is minimum for the decision neither. Then, the recommended decision is neither.
Thus, the decision neither would be recommended.
c.
Construct an opportunity loss table.
c.

Answer to Problem 11CE
An opportunity loss table is
Decision | Opportunity loss | ||
Neither | 220 | 110 | 40 |
Product 1 only | 95 | 45 | 10 |
Product 2 only | 115 | 50 | 10 |
Both | 0 | 0 | 0 |
Explanation of Solution
The opportunity loss table is obtained as follows:
Decision | Opportunity loss | ||
Neither | |||
Product 1 only | |||
Product 2 only | |||
Both |
From the given table if the decision is neither, then the value is 0 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $220 and $0 That is,
Thus, the opportunity loss for the decision is neither, given a state of nature is
From the given table if the decision is product 1 only, then the value is 125 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $220 and $125 That is,
Thus, the opportunity loss for the decision is product 1 only, given a state of nature is
From the given table if the decision is product 2 only, then the value is 105 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $220 and $105 That is,
Thus, the opportunity loss for the decision is product 2 only, given a state of nature is
From the given table if the decision is both, then the value is 220 when the state of nature
Thus, the opportunity loss for the decision is both, given a state of nature is
From the given table if the decision is neither, then the value is 0 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $110 and $0 That is,
Thus, the opportunity loss for the decision is neither, given a state of nature is
From the given table if the decision is product 1 only, then the value is 65 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $110 and $65 That is,
Thus, the opportunity loss for the decision is product 1 only, given a state of nature is
From the given table if the decision is product 2 only, then the value is 60 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $110 and $60 That is,
Thus, the opportunity loss for the decision is product 2 only, given a state of nature is
From the given table if the decision is both, then the value is 110 when the state of nature
Thus, the opportunity loss for the decision is both, given a state of nature is
From the given table if the decision is neither, then the value is 0 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $40 and $0 That is,
Thus, the opportunity loss for the decision is neither, given a state of nature is
From the given table if the decision is product 1 only, then the value is 30 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $40 and $30 That is,
Thus, the opportunity loss for the decision is product 1 only, given a state of nature is
From the given table if the decision is product 2 only, then the value is 30 when the state of nature
Then, the opportunity loss is obtained by taking the difference between $40 and $30 That is,
Thus, the opportunity loss for the decision is product 2 only, given a state of nature is
From the given table if the decision is both, then the value is 40 when the state of nature
Thus, the opportunity loss for the decision is both, given a state of nature is
d.
Find the expected opportunity loss for each decision.
d.

Answer to Problem 11CE
The expected opportunity loss for the decision neither is $129.
The expected opportunity loss for the decision product 1 only is $53.
The expected opportunity loss for the decision product 2 only is $61.5.
The expected opportunity loss for the decision both is $0.
Explanation of Solution
From the given information,
From the part c, the opportunity loss table is
Decision | Opportunity loss | ||
Neither | 220 | 110 | 40 |
Product 1 only | 95 | 45 | 10 |
Product 2 only | 115 | 50 | 10 |
Both | 0 | 0 | 0 |
Then, the expected opportunity loss for the decision neither is
Thus, the expected opportunity loss for the decision neither is $129.
The expected opportunity loss for the decision product 1 only is
Thus, the expected opportunity loss for the decision product 1 only is $53.
The expected opportunity loss for the decision product 2 only is
Thus, the expected opportunity loss for the decision product 2 only is $61.5.
The expected opportunity loss for the decision both is
Thus, the expected opportunity loss for the decision both is $0.
e.
Find the
e.

Answer to Problem 11CE
The expected value of perfect information is –6.
Explanation of Solution
The expected value of perfect information is obtained by taking the difference between the expected value under conditions of certainty and expected value under conditions of uncertainty.
From the opportunity loss table in the part c, in the state of nature
Thus, these are taken as the decisions.
The expected value under conditions of certainty is calculated as follows:
State of Nature | Decision | Payoff | Probability | Expected payoff |
Both | 200 | 0.30 | ||
Both | 110 | 0.50 | ||
Both | 40 | 0.20 |
Then, the expected value under conditions of certainty is obtained by adding 60, 55 and 8. That is,
Thus, the expected value under conditions of certainty is $123.
From the part d, the decision both is recommended, because its expected opportunity loss is less when compared to other decisions. From the part a, it’s expected payoff value is $129. This is the expected value under conditions of uncertainty.
The expected value of perfect information is
Thus, the expected value of perfect information is –6.
Want to see more full solutions like this?
Chapter 20 Solutions
EBK STATISTICAL TECHNIQUES IN BUSINESS
- Faye cuts the sandwich in two fair shares to her. What is the first half s1arrow_forwardQuestion 2. An American option on a stock has payoff given by F = f(St) when it is exercised at time t. We know that the function f is convex. A person claims that because of convexity, it is optimal to exercise at expiration T. Do you agree with them?arrow_forwardQuestion 4. We consider a CRR model with So == 5 and up and down factors u = 1.03 and d = 0.96. We consider the interest rate r = 4% (over one period). Is this a suitable CRR model? (Explain your answer.)arrow_forward
- Question 3. We want to price a put option with strike price K and expiration T. Two financial advisors estimate the parameters with two different statistical methods: they obtain the same return rate μ, the same volatility σ, but the first advisor has interest r₁ and the second advisor has interest rate r2 (r1>r2). They both use a CRR model with the same number of periods to price the option. Which advisor will get the larger price? (Explain your answer.)arrow_forwardQuestion 5. We consider a put option with strike price K and expiration T. This option is priced using a 1-period CRR model. We consider r > 0, and σ > 0 very large. What is the approximate price of the option? In other words, what is the limit of the price of the option as σ∞. (Briefly justify your answer.)arrow_forwardQuestion 6. You collect daily data for the stock of a company Z over the past 4 months (i.e. 80 days) and calculate the log-returns (yk)/(-1. You want to build a CRR model for the evolution of the stock. The expected value and standard deviation of the log-returns are y = 0.06 and Sy 0.1. The money market interest rate is r = 0.04. Determine the risk-neutral probability of the model.arrow_forward
- Several markets (Japan, Switzerland) introduced negative interest rates on their money market. In this problem, we will consider an annual interest rate r < 0. We consider a stock modeled by an N-period CRR model where each period is 1 year (At = 1) and the up and down factors are u and d. (a) We consider an American put option with strike price K and expiration T. Prove that if <0, the optimal strategy is to wait until expiration T to exercise.arrow_forwardWe consider an N-period CRR model where each period is 1 year (At = 1), the up factor is u = 0.1, the down factor is d = e−0.3 and r = 0. We remind you that in the CRR model, the stock price at time tn is modeled (under P) by Sta = So exp (μtn + σ√AtZn), where (Zn) is a simple symmetric random walk. (a) Find the parameters μ and σ for the CRR model described above. (b) Find P Ste So 55/50 € > 1). StN (c) Find lim P 804-N (d) Determine q. (You can use e- 1 x.) Ste (e) Find Q So (f) Find lim Q 004-N StN Soarrow_forwardIn this problem, we consider a 3-period stock market model with evolution given in Fig. 1 below. Each period corresponds to one year. The interest rate is r = 0%. 16 22 28 12 16 12 8 4 2 time Figure 1: Stock evolution for Problem 1. (a) A colleague notices that in the model above, a movement up-down leads to the same value as a movement down-up. He concludes that the model is a CRR model. Is your colleague correct? (Explain your answer.) (b) We consider a European put with strike price K = 10 and expiration T = 3 years. Find the price of this option at time 0. Provide the replicating portfolio for the first period. (c) In addition to the call above, we also consider a European call with strike price K = 10 and expiration T = 3 years. Which one has the highest price? (It is not necessary to provide the price of the call.) (d) We now assume a yearly interest rate r = 25%. We consider a Bermudan put option with strike price K = 10. It works like a standard put, but you can exercise it…arrow_forward
- In this problem, we consider a 2-period stock market model with evolution given in Fig. 1 below. Each period corresponds to one year (At = 1). The yearly interest rate is r = 1/3 = 33%. This model is a CRR model. 25 15 9 10 6 4 time Figure 1: Stock evolution for Problem 1. (a) Find the values of up and down factors u and d, and the risk-neutral probability q. (b) We consider a European put with strike price K the price of this option at time 0. == 16 and expiration T = 2 years. Find (c) Provide the number of shares of stock that the replicating portfolio contains at each pos- sible position. (d) You find this option available on the market for $2. What do you do? (Short answer.) (e) We consider an American put with strike price K = 16 and expiration T = 2 years. Find the price of this option at time 0 and describe the optimal exercising strategy. (f) We consider an American call with strike price K ○ = 16 and expiration T = 2 years. Find the price of this option at time 0 and describe…arrow_forward2.2, 13.2-13.3) question: 5 point(s) possible ubmit test The accompanying table contains the data for the amounts (in oz) in cans of a certain soda. The cans are labeled to indicate that the contents are 20 oz of soda. Use the sign test and 0.05 significance level to test the claim that cans of this soda are filled so that the median amount is 20 oz. If the median is not 20 oz, are consumers being cheated? Click the icon to view the data. What are the null and alternative hypotheses? OA. Ho: Medi More Info H₁: Medi OC. Ho: Medi H₁: Medi Volume (in ounces) 20.3 20.1 20.4 Find the test stat 20.1 20.5 20.1 20.1 19.9 20.1 Test statistic = 20.2 20.3 20.3 20.1 20.4 20.5 Find the P-value 19.7 20.2 20.4 20.1 20.2 20.2 P-value= (R 19.9 20.1 20.5 20.4 20.1 20.4 Determine the p 20.1 20.3 20.4 20.2 20.3 20.4 Since the P-valu 19.9 20.2 19.9 Print Done 20 oz 20 oz 20 oz 20 oz ce that the consumers are being cheated.arrow_forwardT Teenage obesity (O), and weekly fast-food meals (F), among some selected Mississippi teenagers are: Name Obesity (lbs) # of Fast-foods per week Josh 185 10 Karl 172 8 Terry 168 9 Kamie Andy 204 154 12 6 (a) Compute the variance of Obesity, s²o, and the variance of fast-food meals, s², of this data. [Must show full work]. (b) Compute the Correlation Coefficient between O and F. [Must show full work]. (c) Find the Coefficient of Determination between O and F. [Must show full work]. (d) Obtain the Regression equation of this data. [Must show full work]. (e) Interpret your answers in (b), (c), and (d). (Full explanations required). Edit View Insert Format Tools Tablearrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,




