
Pearson eText Conceptual Physical Science -- Instant Access (Pearson+)
6th Edition
ISBN: 9780134857107
Author: Paul Hewitt, John Suchocki
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 10RAT
To determine
The evidences that the fossils in the sedimentary rocks helps to understand.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
CH
57. A 190-g block is launched by compressing a spring of constant
k = = 200 N/m by 15 cm. The spring is mounted horizontally,
and the surface directly under it is frictionless. But beyond the
equilibrium position of the spring end, the surface has frictional
coefficient μ = 0.27. This frictional surface extends 85 cm, fol-
lowed by a frictionless curved rise, as shown in Fig. 7.21. After
it's launched, where does the block finally come to rest? Measure
from the left end of the frictional zone.
Frictionless
μ = 0.27 Frictionless
FIGURE 7.21 Problem 57
3. (a) Show that the CM of a uniform thin rod
of length L and mass M is at its center
(b) Determine the CM of the rod assuming its linear
mass density 1 (its mass per unit length) varies
linearly from λ = λ at the left end to double that
0
value, λ = 2λ, at the right end.
y
0
·x-
dx
dm=λdx
x
+
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all steps
Chapter 20 Solutions
Pearson eText Conceptual Physical Science -- Instant Access (Pearson+)
Ch. 20 - How did density segregation contribute to Earth's...Ch. 20 - What three sources of heat contributed to the...Ch. 20 - What is the most abundant element for Earth as a...Ch. 20 - Prob. 4RCQCh. 20 - What is a mineral?Ch. 20 - What does inorganic in the definition of mineral?Ch. 20 - What physical properties are used to identify...Ch. 20 - Most mineral samples do not display their crystal...Ch. 20 - What is a polymorph?Ch. 20 - What is the difference between a silicate mineral...
Ch. 20 - Silicate minerals are subdivided into...Ch. 20 - What is the most abundant mineral in Earth's...Ch. 20 - Prob. 13RCQCh. 20 - What are two sources from which minerals...Ch. 20 - As minerals crystallize in cooling magma, which...Ch. 20 - When water evaporates from a body of water, what...Ch. 20 - Name the three major types of rocks and describe...Ch. 20 - What are the most common igneous rocks, and where...Ch. 20 - What is meant by partial melting?Ch. 20 - With respect to the silica content of the parent...Ch. 20 - What is the primary determining factor for a...Ch. 20 - In Earths interior, does temperature or decrease...Ch. 20 - Prob. 23RCQCh. 20 - What is a clastic sedimentary rock?Ch. 20 - What are the three most common clastic sedimentary...Ch. 20 - What is the most abundant carbonate rock?Ch. 20 - How are most carbonate rocks formed?Ch. 20 - What is metamorphism? What causes it?Ch. 20 - Distinguish between foliated and nonfoliated...Ch. 20 - In contact metamorphism, water-rich, low-melting...Ch. 20 - Gold has a density of 19.3 g/cm3. A 5-gal pail of...Ch. 20 - Prob. 37TASCh. 20 - Other than location, what is the primary...Ch. 20 - What do we call minerals that have the same...Ch. 20 - The factors that influence bond strength influence...Ch. 20 - Why is color not always the best way to identify a...Ch. 20 - While you are hiking in the wilderness, you find a...Ch. 20 - What makes gold so soft (easily scratched) while...Ch. 20 - Imagine that we have a liquid with a density of...Ch. 20 - Is cleavage the same thing as crystal form? Why or...Ch. 20 - For identifying metallic minerals, why is streak...Ch. 20 - How are minerals classified?Ch. 20 - Silicon is essential for the computer industry in...Ch. 20 - What two minerals make up most of the sand in the...Ch. 20 - What two mineral groups provide most of the ore...Ch. 20 - How are ferromagnesian silicates different from...Ch. 20 - What is an ore?Ch. 20 - If a rock contains mineral A (30% silica) and...Ch. 20 - If a rock contains mineral A (30% silica) and...Ch. 20 - If a magma contains molten forms of mineral A (30%...Ch. 20 - If a magma contains molten forms of mineral A (30%...Ch. 20 - If high-silica minerals are the last to...Ch. 20 - Which of these is a true statement about silicate...Ch. 20 - If a magma contains molten forms of quartz and...Ch. 20 - Are high-silica content minerals "easier" to melt...Ch. 20 - Prob. 71ECh. 20 - If a rock contains both quartz and pyroxene (a...Ch. 20 - Why is halite commonly the last mineral to...Ch. 20 - Is Earth's interior mostly magma? Explain.Ch. 20 - In which parts of Earth's crust (oceanic and/or...Ch. 20 - Are the Hawaiian Islands made up primarily of...Ch. 20 - Why does magma composition change as it cools?Ch. 20 - Is it possible for crystallization to enrich magma...Ch. 20 - Where does most magma originate?Ch. 20 - Prob. 80ECh. 20 - Prob. 81ECh. 20 - How do chemical sediments produce rock? Name two...Ch. 20 - Relate the shape and sorting of sand particles to...Ch. 20 - What general rock feature does a geologist look...Ch. 20 - What feature of clastic sedimentary rock enables...Ch. 20 - Prob. 86ECh. 20 - In what two ways does sediment turn into...Ch. 20 - In a conglomerate rock, why are pebbles of granite...Ch. 20 - Cite two examples of sedimentary rocks that...Ch. 20 - Prob. 90ECh. 20 - Prob. 91ECh. 20 - Can metamorphic rocks exist on an island of purely...Ch. 20 - What patterns of alteration are characteristic of...Ch. 20 - What are the two processes by which rock is...Ch. 20 - What properties of slate make it good roofing...Ch. 20 - Name two mica minerals that can give a metamorphic...Ch. 20 - How is foliation different from sedimentary...Ch. 20 - Why do we find folded and fractured rock layers in...Ch. 20 - What feature helps distinguish schist and gneiss...Ch. 20 - How does gneiss differ from granite?Ch. 20 - Why is schist so easily recognized?Ch. 20 - Which type(s) of rock is (are) made from...Ch. 20 - Which type(s) of rock is (are) made from...Ch. 20 - What is the difference between the minerals that...Ch. 20 - If the volcanic glass obsidian is not considered a...Ch. 20 - We have learned that silica content is a key...Ch. 20 - Which type of rock is most sought by petroleum...Ch. 20 - Prob. 107DQCh. 20 - The silicates are the largest mineral group...Ch. 20 - Compaction and cementation of sediments leads to...Ch. 20 - Why are silicon and oxygen concentrated near...Ch. 20 - Which minerals crystallize first from cooling...Ch. 20 - Prob. 5RATCh. 20 - In a sedimentary rock, the degree of particle...Ch. 20 - The characteristics of regional metamorphism...Ch. 20 - Prob. 8RATCh. 20 - What most strongly influences a minerals hardness?...Ch. 20 - Prob. 10RAT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s. Part A Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air. Express your answer in hours to one significant figure.arrow_forwardRocket Science: CH 83. A rocket of mass M moving at speed v ejects an infinitesimal mass dm out its exhaust nozzle at speed vex. (a) Show that con- servation of momentum implies that M dy = vex dm, where dy is the change in the rocket's speed. (b) Integrate this equation from some initial speed v; and mass M; to a final speed vf and mass Mf Vf to show that the rocket's final velocity is given by the expression V₁ = V¡ + Vex ln(M¡/M₁).arrow_forwardFormant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forward
- microwavearrow_forward4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a) compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass. A o 0.3 3019 20KSarrow_forwardRefer to the image attachedarrow_forward
- Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardMake up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.arrow_forwardA straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.arrow_forward
- A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax


Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY