Automatic sliding doors The first automatic sliding doors were described by Hero of Alexandria almost 2000 years ago. The doors were moved by hanging containers that were filled with water. Modern sliding doors open or close automatically. They are equiped with sensors that detect the proximity of a person and an electromic circuit that processes the signals from the sensors and drives the electomotor-based system that moves the doors. The sensors typically emit pulses of infrared light or ultrasound and detect the reflected pulses. By measuring the delay between emitted and received pulses, the system can determine the distance to the object from which the pulse was reflected. The whole system must be carefully designed to ensure safe and accurate functioning. Designers of such doors take into account several variables such as typical walking speeds of people and their dimensions. Let’s try to learn more about automatic sliding doors by analyzing the motion of a single-side automatic sliding door when a person is walking through the door. Figure 2.30 shows the position-versus-time graph of the motion of the edge of the door (marked with a red cross in the photo) from the moment the door starts opening to when the door is closed while a person walks toward and through the door. The doors are adjusted to start opening when a person is 2.0 m away. A 50-cm wide person is walking toward the door. What is the maximum walking speed of the person that will allow her to pass through the door without hitting it (assume the person aims for the opening)? a. 0.6 m/s b. 1.2 m/s c. 1.7 m/s d. 2.5 m/s
Automatic sliding doors The first automatic sliding doors were described by Hero of Alexandria almost 2000 years ago. The doors were moved by hanging containers that were filled with water. Modern sliding doors open or close automatically. They are equiped with sensors that detect the proximity of a person and an electromic circuit that processes the signals from the sensors and drives the electomotor-based system that moves the doors. The sensors typically emit pulses of infrared light or ultrasound and detect the reflected pulses. By measuring the delay between emitted and received pulses, the system can determine the distance to the object from which the pulse was reflected. The whole system must be carefully designed to ensure safe and accurate functioning. Designers of such doors take into account several variables such as typical walking speeds of people and their dimensions. Let’s try to learn more about automatic sliding doors by analyzing the motion of a single-side automatic sliding door when a person is walking through the door. Figure 2.30 shows the position-versus-time graph of the motion of the edge of the door (marked with a red cross in the photo) from the moment the door starts opening to when the door is closed while a person walks toward and through the door. The doors are adjusted to start opening when a person is 2.0 m away. A 50-cm wide person is walking toward the door. What is the maximum walking speed of the person that will allow her to pass through the door without hitting it (assume the person aims for the opening)? a. 0.6 m/s b. 1.2 m/s c. 1.7 m/s d. 2.5 m/s
Automatic sliding doors The first automatic sliding doors were described by Hero of Alexandria almost 2000 years ago. The doors were moved by hanging containers that were filled with water. Modern sliding doors open or close automatically. They are equiped with sensors that detect the proximity of a person and an electromic circuit that processes the signals from the sensors and drives the electomotor-based system that moves the doors. The sensors typically emit pulses of infrared light or ultrasound and detect the reflected pulses. By measuring the delay between emitted and received pulses, the system can determine the distance to the object from which the pulse was reflected. The whole system must be carefully designed to ensure safe and accurate functioning. Designers of such doors take into account several variables such as typical walking speeds of people and their dimensions.
Let’s try to learn more about automatic sliding doors by analyzing the motion of a single-side automatic sliding door when a person is walking through the door. Figure 2.30 shows the position-versus-time graph of the motion of the edge of the door (marked with a red cross in the photo) from the moment the door starts opening to when the door is closed while a person walks toward and through the door. The doors are adjusted to start opening when a person is 2.0 m away.
A 50-cm wide person is walking toward the door. What is the maximum walking speed of the person that will allow her to pass through the door without hitting it (assume the person aims for the opening)?
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
■ Review | Constants
A cylinder with a movable piston contains 3.75 mol
of N2 gas (assumed to behave like an ideal gas).
Part A
The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in
temperature.
ΜΕ ΑΣΦ
AT =
Submit
Request Answer
Part B
?
K
Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while
remaining at constant pressure. Calculate the temperature change.
AT =
Π ΑΣΦ
Submit
Request Answer
Provide Feedback
?
K
Next
4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC)
into a rectangle, bringing them together from an initial situation where they were all
an infinite distance away from each other. Find the electric potential at point "A"
(marked by the X) and tell me how much work it would require to bring a +10.0 μC
charge to point A if it started an infinite distance away (assume that the other three
charges remains fixed).
300 mm
-4 UC
"A"
0.400 mm
+6 UC
+3 UC
5. It's Friday night, and you've got big party plans. What will you do? Why, make a
capacitor, of course! You use aluminum foil as the plates, and since a standard roll of
aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by
30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125
mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If
you connect it to a 12 V battery, how much charge is stored on either plate?
=
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.