* BIO EST Water striders Water striders are insects that propel themselves on the surface of ponds by creating vortices in the water shed by their driving legs. The velocity- versus-time graph of a 17-mm-long water strider that moved in a straight line was created from a video (Figure P2.76). The insect started from rest, sped up by taking two strides, and then slowed down until it stopped. Estimate (a) the maximum speed (in m/s), (b) the maximum acceleration (in m/s 2 ), and (c) the total displacement (in m) of the water strider. Note that the velocity on the graph is given in units of length of water strider body per second.
* BIO EST Water striders Water striders are insects that propel themselves on the surface of ponds by creating vortices in the water shed by their driving legs. The velocity- versus-time graph of a 17-mm-long water strider that moved in a straight line was created from a video (Figure P2.76). The insect started from rest, sped up by taking two strides, and then slowed down until it stopped. Estimate (a) the maximum speed (in m/s), (b) the maximum acceleration (in m/s 2 ), and (c) the total displacement (in m) of the water strider. Note that the velocity on the graph is given in units of length of water strider body per second.
* BIO EST Water striders Water striders are insects that propel themselves on the surface of ponds by creating vortices in the water shed by their driving legs. The velocity- versus-time graph of a 17-mm-long water strider that moved in a straight line was created from a video (Figure P2.76). The insect started from rest, sped up by taking two strides, and then slowed down until it stopped. Estimate (a) the maximum speed (in m/s), (b) the maximum acceleration (in
m/s
2
), and (c) the total displacement (in m) of the water strider. Note that the velocity on the graph is given in units of length of water strider body per second.
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m
tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is
horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit.
(a) Determine the required constant friction force (in N) for the last 20 m for the empty test car.
N
(b) Find the highest speed (in m/s) reached by the car during the final section of track length…
A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.