
(a)
To graph: A stem-and-leaf plot for the data of the age distribution.
(a)

Explanation of Solution
The data shows the ages of 50 drivers arrested while driver under the influence of alcohol.
Graph: To construct stem-and-leaf plot by using the Minitab, the steps are as follows:
Step 1: Enter the data in C1.
Step 2: Go to Graph > Stem-and-Leaf plot and select ‘C1’ in Graph variable.
Step 3: Click on OK.
The Stem-and-Leaf plot for these data is obtained as:
Stem-and-leaf of the age distribution N = 50 | ||
1 | 6 8 | |
2 | 0 1 1 2 2 2 3 4 4 5 6 6 6 7 7 7 9 | |
3 | 0 0 1 1 2 3 4 4 5 5 6 7 8 9 | |
4 | 0 0 1 3 5 6 7 7 9 9 | |
5 | 1 3 5 6 8 | |
6 | 3 4 |
(b)
To find: The frequency table for the data..
(b)

Answer to Problem 8CR
Solution: The complete frequency table is as:
Class Limits | Class boundaries | Midpoints | Frequency | Relative Frequency | Cumulative Frequency |
16-22 | 15.5-22.5 | 19 | 8 | 0.16 | 8 |
23-29 | 22.5-29.5 | 26 | 11 | 0.22 | 19 |
30-36 | 29.5-36.5 | 33 | 11 | 0.22 | 30 |
37-43 | 36.5-43.5 | 40 | 7 | 0.14 | 37 |
44-50 | 43.5-50.5 | 47 | 6 | 0.12 | 43 |
51-57 | 50.5-57.5 | 54 | 4 | 0.08 | 47 |
58-64 | 57.5-64.5 | 61 | 3 | 0.06 | 50 |
Explanation of Solution
Calculation: To find the class width for the whole data of 50 values, it is observed that largest value of the data set is 64 and the smallest value is 16 in the data. Using 7 classes, the class width calculated in the following way:
The value is round up to the nearest whole number. Hence, the class width of the data set is 7. The class width for the data is 7 and the lowest data value (16) will be the lower class limit of the first class. Because the class width is 7, it must add 7 to the lowest class limit in the first class to find the lowest class limit in the second class. There are 7 desired classes. Hence, the class limits are 16-22, 23-29, 30-36, 37-43, 44-50, 51-57, and 58-64. Now, to find the class boundaries subtract 0.5 from lower limit of every class and add 0.5 to the upper limit of the every class interval. Hence, the class boundaries are 15.5-22.5, 22.5-29.5, 29.5-36.5, 36.5-43.5, 43.5-50.5, 50.5-57.5, and 57.5-64.5.
Next to find the midpoint of the class is calculated by using formula,
Midpoint of first class is calculated as:
The frequencies for respective classes are 8, 11, 11, 7, 6, 4 and 3.
Relative frequency is calculated by using the formula,
The frequency for 1st class is 8 and total frequencies are 50 so the relative frequency is
The calculated frequency table is as follows:
Class limits | Class boundaries | midpoints | Frequency | Relative Frequency | Cumulative Frequency |
16-22 | 15.5-22.5 | 19 | 8 | 0.16 | 8 |
23-29 | 22.5-29.5 | 26 | 11 | 0.22 | |
30-36 | 29.5-36.5 | 33 | 11 | 0.22 | |
37-43 | 36.5-43.5 | 40 | 7 | 0.14 | |
44-50 | 43.5-50.5 | 47 | 6 | 0.12 | |
51-57 | 50.5-57.5 | 54 | 4 | 0.08 | |
58-64 | 57.5-64.5 | 61 | 3 | 0.06 |
Interpretation: Hence, the complete frequency table is as:
Class limits | Class boundaries | Midpoints | Frequency | Relative Frequency | Cumulative Frequency |
16-22 | 15.5-22.5 | 19 | 8 | 0.16 | 8 |
23-29 | 22.5-29.5 | 26 | 11 | 0.22 | |
30-36 | 29.5-36.5 | 33 | 11 | 0.22 | |
37-43 | 36.5-43.5 | 40 | 7 | 0.14 | |
44-50 | 43.5-50.5 | 47 | 6 | 0.12 | |
51-57 | 50.5-57.5 | 54 | 4 | 0.08 | |
58-64 | 57.5-64.5 | 61 | 3 | 0.06 |
(c)
To graph: A histogram for the data of the age distribution.
(c)

Explanation of Solution
The data shows the ages of 50 drivers arrested while driver under the influence of alcohol.
Graph: To construct the histogram by using the MINITAB, the steps are as follows:
Step 1: Enter the class boundaries in C1 and frequency in C2.
Step 2: Go to Graph > Histogram > Simple.
Step 3: Enter C1 in Graph variable then go to Data options > Frequency > C2.
Step 4: Click on OK.
The obtained histogram is
(d)
The shape of the histogram of age distribution..
(d)

Answer to Problem 8CR
Solution: The shape of histogram of age distribution is skewed to the right.
Explanation of Solution
A right-skewed distribution has a long right tail. Right-skewed distributions are also called positive-skew distributions. That’s because there is a long tail in the positive direction on the number line.
From above histogram, there are two class boundaries (22.5-29.5 and 29.5-36) have higher frequencies 11 on left side and most of the data values fall on the left side of the graph. The data to lean towards right side of the graph and also there is tail on right side.
Hence, the shape of histogram of age distribution is skewed to the right.
Want to see more full solutions like this?
Chapter 2 Solutions
Bundle: Understanding Basic Statistics, Loose-leaf Version, 7th + WebAssign Printed Access Card for Brase/Brase's Understanding Basic Statistics, ... for Peck's Statistics: Learning from Data
- Question 2 The data below provides the battery life of thirty eight (38) motorcycle batteries. 100 83 83 105 110 81 114 99 101 105 78 115 74 96 106 89 94 81 106 91 93 86 79 103 94 108 113 100 117 120 77 93 93 85 76 89 78 88 680 a. Test the hypothesis that mean battery life is greater than 90. Use the 1% level of significance. b. Determine if the mean battery life is different from 80. Use the 10% level of significance. Show all steps for the hypothesis test c. Would your conlcusion in part (b) change at the 5% level of significance? | d. Confirm test results in part (b) using JASP. Note: All JASP input files and output tables should be providedarrow_forwardSuppose that 80% of athletes at a certain college graduate. You randomly select eight athletes. What’s the chance that at most 7 of them graduate?arrow_forwardSuppose that you flip a fair coin four times. What’s the chance of getting at least one head?arrow_forward
- Suppose that the chance that an elementary student eats hot lunch is 30 percent. What’s the chance that, among 20 randomly selected students, between 6 and 8 students eat hot lunch (inclusive)?arrow_forwardBob’s commuting times to work are varied. He makes it to work on time 80 percent of the time. On 12 randomly selected trips to work, what’s the chance that Bob makes it on time at least 10 times?arrow_forwardYour chance of winning a small prize in a scratch-off ticket is 10 percent. You buy five tickets. What’s the chance you will win at least one prize?arrow_forward
- Suppose that 60 percent of families own a pet. You randomly sample four families. What is the chance that two or three of them own a pet?arrow_forwardIf 40 percent of university students purchase their textbooks online, in a random sample of five students, what’s the chance that exactly one of them purchased their textbooks online?arrow_forwardA stoplight is green 40 percent of the time. If you stop at this light eight random times, what is the chance that it’s green exactly five times?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
