CHEMISTRY THE CENTRAL SCIENCE 14TH EDI
14th Edition
ISBN: 9780134863016
Author: Brown
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 87AE
Suppose a scientist repeats the Millikan oil-drop experiment but reports the charges on the drops using an unusual (and imaginary) unit called the warmomb (wa). The scientist obtains the following data for four of the drops:
Droplet Calculated Charge (wa)
A 3.84 x 10-8
B 4.80 x 10-8
C 2.88 x 10-8
D 8.64 x 10-8
- If all the droplets were the same size, which would fall most slowly through the apparatus?'
- From these data, what is the best choice for the charge of the electron in warmombs?
- Based on your answer to part (b), how many electrons are there on each of the droplets?
- What is the conversion factor between warmombs and coulombs?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
CHEMISTRY THE CENTRAL SCIENCE 14TH EDI
Ch. 2.3 - Which of the following factors determines the size...Ch. 2.3 - Practice Exercise 2 The diameter of a cartoon atom...Ch. 2.3 - Practice Exercise 1 Which of these atoms has the...Ch. 2.3 - Practice Exercise 2
How many protons, neutrons,...Ch. 2.3 - Prob. 2.3.1PECh. 2.3 - Practice Exercise 2
Give the complete chemical...Ch. 2.4 - Practice Exercise 1 There are two stable isotopes...Ch. 2.4 - Practice Exercise 2
Three isotopes of silicon...Ch. 2.5 - Practice Exercise 1 A biochemist who is studying...Ch. 2.5 - Practice Exercise 2 Locate Na (sodium) and Br...
Ch. 2.6 - Practice Exercise 1 Tetra carbon dioxide is an...Ch. 2.6 - Practice Exercise 2 Give the empirical formula for...Ch. 2.7 - Practice Exercise 1 In which of the following...Ch. 2.7 - Practice Exercise 2 How many protons, neutrons,...Ch. 2.7 - Practice Exercise 1
Although it is helpful to...Ch. 2.7 - Prob. 2.8.2PECh. 2.7 - Prob. 2.9.1PECh. 2.7 - Prob. 2.9.2PECh. 2.7 - Prob. 2.10.1PECh. 2.7 - Practice Exercise 2
Write the empirical formula...Ch. 2.8 - Practice Exercise 1 Which of the follow-mg ox...Ch. 2.8 - Prob. 2.11.2PECh. 2.8 - Prob. 2.12.1PECh. 2.8 - Prob. 2.12.2PECh. 2.8 - Prob. 2.13.1PECh. 2.8 - Prob. 2.13.2PECh. 2.8 - Prob. 2.14.1PECh. 2.8 - Practice Exercise 2
Give the chemical fomi uias...Ch. 2.9 - Prob. 2.15.1PECh. 2.9 - Prob. 2.15.2PECh. 2 - Prob. 1ECh. 2 - The followmg diagram is a representation of 20...Ch. 2 - 2 3 Four of the boxes in the following periodic...Ch. 2 -
24 Does the following drawing represent a neutral...Ch. 2 - 2.5 Which of the following diagrams most likely...Ch. 2 - Write the chemical formula for the following...Ch. 2 - Prob. 7ECh. 2 - Prob. 8ECh. 2 - 2.9 Are these two compounds isomers? Explain....Ch. 2 - 2.10 In the Millikan oil-drop experiment (see...Ch. 2 - A 1.0-g sample of carbon dioxide (002) is fully...Ch. 2 - Hydrogen sulfide is composed of two elements:...Ch. 2 - A chemist finds that 30.82 g of nitrogen will...Ch. 2 - 2 . 14 In a series at exper'ments. a chemist...Ch. 2 - 215 Which of the three subatomic particles was...Ch. 2 - 2.16 An unknown particle is caused to move between...Ch. 2 - 2.17 What fraction of α particle in Rutherford’s...Ch. 2 - it 18 Millikan determined the charge on the...Ch. 2 - The radius of an atom of gold (Au) is about 1.35 Å...Ch. 2 - 220 An atom of rhodium (Rh) has a diameter of...Ch. 2 - 2.21 Answer the following questions without...Ch. 2 - Determine whether each of the following statements...Ch. 2 - Consider an atom of "B. a. How many protons,...Ch. 2 - Consider an atom of 63Cu. a. How many protons,...Ch. 2 - 2.25
3. Define atomic number and mass number
b....Ch. 2 -
2 26
Which two of the following are isotopes of...Ch. 2 - How many ptotons, neutrons, and electrons are in...Ch. 2 - 2-28 Each of the following isotopes is used in...Ch. 2 - Prob. 29ECh. 2 - Fill in the gaps in the following table, assuming...Ch. 2 - Write the correct symbol, with both superscript...Ch. 2 - One way in which Earth's evolution as a planet can...Ch. 2 - 2.33
a. What isotope is used as the standard in...Ch. 2 - 2.34
a. What is the mass in amu of a carbon-12...Ch. 2 - Only two isotopes of copper occur naturally:63Cu...Ch. 2 - 2.36 Rubidium has two naturally occurring...Ch. 2 - a. Thomson’s cathode-ray tube (Figure 2.49) and...Ch. 2 -
2.38 Consider the mass spectrometer shown in...Ch. 2 - Naturally occurring magnesium has the following...Ch. 2 - Mass spectrometry is more often applied to...Ch. 2 - 2-41 For each of the following elements, write its...Ch. 2 - Locate each of the following elements in the...Ch. 2 - 2-43 For each of the following elements, write its...Ch. 2 - 2.44 The elements of group 4A show an interesting...Ch. 2 - 2.45 The structural formulas of the compounds...Ch. 2 - 2.46 Ball-and-stick representations of benzene, a...Ch. 2 - 2447 What are the molecular and empirical formulas...Ch. 2 -
2.48 Two substances have the same molecular and...Ch. 2 - 2.49 Write the empirical formula corresponding to...Ch. 2 - Determine the molecular and empirical formulas of...Ch. 2 - 251 How many hydrogen atoms are un each of the...Ch. 2 - Prob. 52ECh. 2 - 253 Write the molecular and structural formulas...Ch. 2 - 2-54 Write the molecular and structural formulas...Ch. 2 - Fill in the gaps in the following table’Ch. 2 - 2.56 Fill in the gaps in the following...Ch. 2 - Each of the following elements is capable of...Ch. 2 - Using the periodic table, predict the charges of...Ch. 2 - 2.59 Using the periodic table to guide you,...Ch. 2 - 2-60 The most common charge associated with...Ch. 2 - 2.61 Predict the chemical formula for the ionic...Ch. 2 - Predict the chemical formulas of the compounds...Ch. 2 - Prob. 63ECh. 2 - Prob. 64ECh. 2 - Predict whether each of the following compounds is...Ch. 2 - 2.66 Which of the following are ionic, and which...Ch. 2 - Prob. 67ECh. 2 - Prob. 68ECh. 2 -
2.69 Give the names and charges of the cation and...Ch. 2 - Give the names and charges of the cation and anion...Ch. 2 -
2.71 Name the following ionic compounds:
a....Ch. 2 - Prob. 72ECh. 2 -
2.73 Write the chemical formulas for the...Ch. 2 -
Give the chemical formula for each of the...Ch. 2 -
2.75 Give the name or chemical formula, as...Ch. 2 - Prob. 76ECh. 2 -
2.T Give the name or Chemical formula, as...Ch. 2 - The oxides of nitrogen are very important...Ch. 2 - Prob. 79ECh. 2 - Assume that you encounter the following sentences...Ch. 2 - a. What is a hydrocarbon? b. Pentane is the alkane...Ch. 2 - 2.82
a. What is meant by the term isomer?
b. Among...Ch. 2 -
2.83
What is a functional group?
What functional...Ch. 2 -
2.84 Consider the following organic substances:...Ch. 2 -
2.85 Chloropropane is derived from propane by...Ch. 2 -
2.86 Draw the structural formulas for three...Ch. 2 - Suppose a scientist repeats the Millikan oil-drop...Ch. 2 -
2.88 The natural abundance of 3He is...Ch. 2 - A cube of gold that is 1.00 cm on a side has a...Ch. 2 -
2.90 The diameter of a rubidium atom is 4.95 A....Ch. 2 -
2.91
Assuming the dimensions of the nucleus and...Ch. 2 -
2.92 Identify the element reoresented by the each...Ch. 2 -
2.93 The nucleus of 6Li is a powerful absorber of...Ch. 2 - The element oxygen has three naturally occurring...Ch. 2 - The element lead (Pb) consists of four naturally...Ch. 2 -
2.96 Gallium (Ga) consists of two naturally...Ch. 2 - Using a suitable reference such as the CRC...Ch. 2 - There are two different isotopes of bromine atoms....Ch. 2 -
2.99 It is common in mass spectrometry to assume...Ch. 2 - From the following list of elements—Ar, H, Ga, Al,...Ch. 2 -
2.101 The first atoms of seaborgium (Sg) were...Ch. 2 -
2.102 The explosion of an atomic bomb releases...Ch. 2 -
2.103. A U.S. 1-cent coin (a penny) has a...Ch. 2 -
2.104 The U.S. Mint produces a dollar coin called...Ch. 2 -
2.105 From the molecular structures shown here,...Ch. 2 -
2.106 Name each of the following oxides. Assuming...Ch. 2 - Prob. 107AECh. 2 -
2.108 Cyclopropane is an interesting hydrocarbon....Ch. 2 - Prob. 109AECh. 2 - Prob. 110AECh. 2 - Give the chemical names of each of the following...Ch. 2 -
2.112 Many familiar substances have common,...Ch. 2 -
2.113 Because many ions and compounds have very...Ch. 2 -
2.114 In what part of the atom does the strong...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A cube of sodium has length 1.25 in. How many atoms are in that cube? (Note: dNa=0.968 g/cm3.)arrow_forwardEuropium has two stable isotopes, 151Eu and 153Eu, with masses of 150.9197 u and 152.9212 u, respectively. Calculate the percent abundances of these isotopes of europium.arrow_forwardNeon has three stable isotopes, one with a small abundance. What are the abundances of the other two isotopes? 20Ne, mass = 19.992435 u; percent abundance = ? 21Ne mass = 20.993843 u; percent abundance = 027% 22Ne mass = 21.991383 u: percent abundance = ?arrow_forward
- When a sample of phosphorus burns in air, the compound P4O10 forms. One experiment showed that 0.744 g of phosphorus formed 1.704 g of P4O10. Use this information to determine the ratio of the atomic weights of phosphorus and oxygen (mass P/mass O). If the atomic weight of oxygen is assumed to be 16.000, calculate the atomic weight of phosphorus.arrow_forwardAn alloy of iron (54.7%), nickel (45.0%), and manganese (0.3%) has a density of 8.17 g/cm3. How many iron atoms are there in a block of alloy measuring 10.0 cm 20.0 cm 15.0 cm?arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible.arrow_forward
- Early tables of atomic weights (masses) were generated by measuring the mass of a substance that reacts with 1.00 g of oxygen. Given the following data and taking the atomic mass of hydrogen as 1.00, generate a table of relative atomic masses for oxygen, sodium, and magnesium. Element Mass That Combines with 1.00Oxygen Assumed Formula Hydrogen 0.126g HO Sodium 2.875g Nao Magnesium 1.500g Mgoarrow_forwardThe mass spectrum of bromine (Br2) consists of three peaks with the following characteristics: Mass (u) Relative Size 157.84 0.2534 159.84 0.5000 161.84 0.2466 How do you interpret these data?arrow_forwardThese questions concern the work of J. J. Thomson. a. From Thomsons work, which particles do you think he would feel are most important for the formation of compounds (chemical changes) and why? b. Of the remaining two subatomic particles, which do you place second in importance for forming compounds and why? c. Propose three models that explain Thomsons findings and evaluate them. To be complete you should include Thomsons findings.arrow_forward
- Each of the following statements is true, but Dalton might have had trouble explaining some of them with his atomic theory. Give explanations for the following statements. a. The space-filling models for ethyl alcohol and dimethyl ether are shown below. These two compounds have die same composition by mass (52% carbon, 13% hydrogen, and 35% oxygen), yet the two have different melting points, boiling points, and solubilities in water. b. Burning wood leaves an ash that is only a small fraction of the mass of the original wood. c. Atoms can be broken down into smaller particles. d. One sample of lithium hydride is 87.4% lithium by mass, while another sample of lithium hydride Ls 74.9% lithium by mass. However, the two samples have the same chemical properties.arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible. 21. Repeat Exercise 2.20 using an element that has three naturally occurring isotopes.arrow_forwardConsider the following data for three binary compounds of hydrogen and nitrogen: %H (by Mass) %N (by Mass) I 17.75 82.25 II 12.58 87.42 III 2.34 97.66 When 1.00 L of each gaseous compound is decomposed to its elements, the following volumes of H2(g) and N2(g) are obtained: H2(L) N2(L) I 1.50 0.50 II 2.00 1.00 III 0.50 1.50 Use these data to determine the molecular formulas of compounds I, II, and III and to determine the relative values for the atomic masses of hydrogen and nitrogen.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY