FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 84P
Repeat Prob. 2-83 for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the system shown in figure, find the time required to
fill the cylindrical tank (D-60cm) if, V₁-3m/s, D₁=2cm,
V₂-5m/s, D₂-6cm, and V3-7.2m/s, D3-5cm.
02
1)
h=1.2m
3
(2)
The velocity profile of a liquid flows through the z direction of the vertical tube (figure right)
with the radius n is given as;
1 dp
(r2 – r3)
2µ dz
Vz
Specify the max imum velocity and derive an expression for the average velocity.
In the system given in the figure, the top of the container and the pipe outlet aresince it is open;a) The volumetric flow of water (L / s) at the pipe outlet,b) Calculate the pressures at A and B points.H = 151 m,h = 121 mPipe diameters D1 = 40 cm, D2 = 150 mm
Chapter 2 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 2 - What is the difference between intensive and...Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A 75-L container is filled with 1 kg of air at a...Ch. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...
Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - A cylindrical tank of methanol has a mass of 60kg...Ch. 2 - The combustion in a gasoline engine may be...Ch. 2 - Consider Table 2-1 in the textbook, which lists...Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - Prob. 27CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 33CPCh. 2 - Prob. 34EPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Prob. 37CPCh. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Use the coefficient of volume expansion to...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - Prob. 42PCh. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 47EPCh. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52CPCh. 2 - Prob. 53CPCh. 2 - In which medium will sound travel fastest for a...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - Prob. 59PCh. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 61PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 63PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Prob. 69CPCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 72CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 88PCh. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 92CPCh. 2 - Prob. 93CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 97PCh. 2 - Consider a 0.15-mm diameter air bubble a liquid....Ch. 2 - Prob. 99PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 101EPCh. 2 - Prob. 102PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 106PCh. 2 - Prob. 107EPCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The analysis of a propeller that operates in water...Ch. 2 - A closed tank is partially filled with water at...Ch. 2 - Prob. 112PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - A newly produced pipe with diameter of 3m and...Ch. 2 - Prove that the coefficient of volume expansion for...Ch. 2 - Although liquids, in general, are hard to...Ch. 2 - Air expands isentropically from 200psia and 240F...Ch. 2 - Prob. 120PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - Derive a relation for the capillary rise eta...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - A large plate is pulled at a constant spend of...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - A fluid between two very long parallel plates is...Ch. 2 - The rotating parts of a hydroelectric power plant...Ch. 2 - The viscosity of some fluids changes when a strong...Ch. 2 - Prob. 129PCh. 2 - Prob. 130PCh. 2 - Prob. 131PCh. 2 - Oil of viscosity =0.0357Pas and density...Ch. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Prob. 135PCh. 2 - Prob. 136PCh. 2 - Prob. 137PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - The pressure of water is increased from 100kPa to...Ch. 2 - An ideal gas is compressed isothermally from...Ch. 2 - The variation of the density of a fluid with...Ch. 2 - Prob. 143PCh. 2 - The viscosity of liquids and the viscosity of...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - A 0.6-mm-diameter glass tube is inserted into...Ch. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 155PCh. 2 - Prob. 156PCh. 2 - Prob. 157PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6-35E A fan with 24-in-diameter blades moves 2000 cfm (cubic feet per minute) of air at 70°F at sea level. Determine (a) the force required to hold the fan and (b) the minimum power input required for the fan. Choose a control volume sufficiently large to contain the fan, with the inlet sufficiently far upstream so that the gage pressure at the inlet is nearly tero. Assume air approaches the fan through a large area with egligible velocity and air exits the fan with a uniform veloc- yat atmospheric pressure through an imaginary cylinder whose diameter is the fan blade diameter. Answers: (a) 0.820 of, (b) 5.91 W farrow_forwardProblem# 5 Container is placed over incliced plare, it accelarate at 10 m/s2, will the water inside tank spil from the container tank (200 300*400), the level of water inside the tank is 150 Also determine the force on the left side of the contanerarrow_forwardShow Solutions clearly. Provide necessary explanations and diagram needed for the solutionarrow_forward
- 3-16. Consider a film of liquid draining at volume flow rate Q down the outside of a verti- cal rod of radius a, as shown in Fig. P3-16. Some distance down the rod, a fully devel- oped region is reached where fluid shear balances gravity and the film thickness remains constant. Assuming incompressible laminar flow and negligible shear inter- action with the atmosphere, find an expression for v₂(r) and a relation between Q and film radius b.arrow_forwardA vertical dam has a semicircular gate as shown in the figure. The total depth d of the figure is 10 m, the height h of air above the water level is 2 m, and the width w of the gate is 4 m. 2 m 10 m water level 4 m Set up an integral that can be used to find the hydrostatic force (in N) against the gate. (Use 9.8 m/s² for the acceleration due to gravity. Assume that the weight density of this water is 1,000 kg/m³.) X (1,000)(9.8) dx Find the hydrostatic force (in N) against the gate. (Round your answer to the nearest whole number.) Narrow_forwardPressure in accelerated rigid body motions we use the small, cubical element of fluid shown in Figure below and consider it to be part of a larger mass of fluid. If the fluid was being accelerated, then the sum of the forces acting on it, in the direction of the acceleration, must equal the mass times the acceleration. For the cubical element of fluid being accelerated in the vertical direction, we rewrite as 2= Az Az z-0 Direction of gravityarrow_forward
- in the figure is lowered from a ship to a floor. The on the осеan construction site plastic panel weighs ( 200N) in air and is Cuble ship lowered at a rate of ( 2 m/s ). Assuming the panel remains vertically oriented, calculate ng the tension force in the cable. Take ( p = 1000 10* m/s ),e and use; water T Plustic Punel kg/m', v 1.31 1/5 1/2 CDlam = 1.328 / Rej" Cpturb = 0.072 / Rej. .arrow_forwardThe velocity distribution of fluid flowing through the tube is expressed in parabolic form as shown in the figure. Find shear stress on the wall of the tube. Please tell me the process of solving.arrow_forwardIs the Fh equal to the force made on the bolts at flange 1-1 in this question? And can you please plug in the values and the answer so than I can compare with my solution? Please The water flows from the nozzle through a 180-degree elbow. For example, the pipe diameter D-75mm, the nozzle diameter d=25mm, and the pressure gauge at the front of the pipe reads 60kPa. Find the force of the upper, middle and lower bolts at the flange joint 1-1 position. Assuming that four bolts are installed at the up, down, front and back, the cross-center distance of the four bolts is 150mm, the weight of the elbow and the water is 100N, and the acting position is shown in the figure.arrow_forward
- In the Fig. is shown the cross-section of the tank full of water under pressure. The length of the tank is 2.5 m. An empty cylinder lies along the length of the tank on one of its corners as shown. Find the horizontal and vertical components of the force acting on the curved surface LMN of the cylinderarrow_forwardA cylinder with a mass 0.222 kg is sliding downwards through a vertically positioned pipe. A thin oil layer exists between the cylinder and the pipe's internal surface. Centerline of the cylinder and the pipe overlap. (yoil =8044.2 N /m3 ; voil=6-106 m²/s). Find the change in the speed of cylinder in the pipe with respect to its unit displacement and the shear stress that acts upon the oil layer. A A L = 128 mm V W 73.8 mm 74 mm 0.1 mm Figure 1arrow_forwardA vertical dam has a semicircular gate as shown in the figure. The total depth d of the figure is 12 m, the height h of air above the water level is 2 m, and the width w of the gate is 10 m. Find the hydrostatic force (in N) against the gate. (Round your answer to the nearest whole number. Use 9.8 m/s2 for the acceleration due to gravity. Recall that the weight density of water is 1,000 kg/m³.) 1040542 12 m XN 10 m 2 m water level Ⓡarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Solids: Lesson 53 - Slope and Deflection of Beams Intro; Author: Jeff Hanson;https://www.youtube.com/watch?v=I7lTq68JRmY;License: Standard YouTube License, CC-BY