Free Fall on Different Worlds Objects in free fall on the earth have acceleration a y = –9.8 m/s 2 . On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity v i and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment. 80. On the earth, an astronaut throws a ball straight upward; it stays in the air for a total time of 3.0 s before reaching the ground again. If a ball were to be thrown upward with the same initial speed on the moon, how much time would pass before it hit the ground? A. 7.3 s B. 18 s C. 44 s D. 108 s
Free Fall on Different Worlds Objects in free fall on the earth have acceleration a y = –9.8 m/s 2 . On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity v i and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment. 80. On the earth, an astronaut throws a ball straight upward; it stays in the air for a total time of 3.0 s before reaching the ground again. If a ball were to be thrown upward with the same initial speed on the moon, how much time would pass before it hit the ground? A. 7.3 s B. 18 s C. 44 s D. 108 s
Objects in free fall on the earth have acceleration ay = –9.8 m/s2. On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity vi and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment.
80. On the earth, an astronaut throws a ball straight upward; it stays in the air for a total time of 3.0 s before reaching the ground again. If a ball were to be thrown upward with the same initial speed on the moon, how much time would pass before it hit the ground?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
Chapter 2 Solutions
College Physics: A Strategic Approach, Books a la Carte Edition (4th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.