The formula of the binary compound formed from the given pairs of elements in each case is to be stated. Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, group number-8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
The formula of the binary compound formed from the given pairs of elements in each case is to be stated. Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, group number-8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
Solution Summary: The author explains the formula of the binary compound formed from the given pairs of elements in each case.
The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, group number-8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
(b)
Interpretation Introduction
Interpretation:
The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, group number-8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
(c)
Interpretation Introduction
Interpretation:
The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, group number-8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
(d)
Interpretation Introduction
Interpretation:
The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction:
The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, groupnumber-8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
Photochemical smog is formed in part by the action of light on nitrogen dioxide. The wavelength of radiation absorbed by NO2 in this reaction is 197 nm.(a) Draw the Lewis structure of NO2 and sketch its π molecular orbitals.(b) When 1.56 mJ of energy is absorbed by 3.0 L of air at 20 °C and 0.91 atm, all the NO2 molecules in this sample dissociate by the reaction shown. Assume that each absorbed photon leads to the dissociation (into NO and O) of one NO2 molecule. What is the proportion, in parts per million, of NO2 molecules in this sample? Assume that the sample behaves ideally.
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
Chapter 2 Solutions
Lab Manual for Zumdahl/Zumdahl/DeCoste¿s Chemistry, 10th Edition