Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 80PCE
To celebrate a victory, a pitcher throws her glove straight upward with an initial speed of 6.5 m/s. (a) How much time does it take for the glove to return to the pitcher? (b) How much time does it take for the glove to reach its maximum height?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hot air balloon has just lifted off and is rising at a constant rate of 2.0 m/s. Suddenly one of the
passengers realizes she has left her camera on the ground. A friend picks it up and tosses it straight
upward with an initial speed of 12 m/s. If the passenger is 2.5 m above her friend when the camera is
tossed, how high is she above her friend when the camera reaches he ?
A juggler throws a bowling pin straight up with an initial speed of 3.2 m/s from an initial height of 2 m. How much time elapses until the bowling pin returns to the same initial height?
The basketball bounces straight back up off the ground and reaches a maximum height of 4.00m.
a)With what speed did the ball leave the ground? (It is perfectly natural for this to be less than the speed it had before it hit the ground.)
The basketball hoop is 3.05 m above the ground. The ball will pass the position of the hoop twice –once on the way up and a second time on the way down.
b)Determine the ball's velocity (magnitude and direction) as it reaches the height of the hoop on its way down.
Chapter 2 Solutions
Physics (5th Edition)
Ch. 2.1 - For each of the following questions, give an...Ch. 2.2 - The position of an object as a function of time is...Ch. 2.3 - Figure 2-10 shows the position-versus-time graph...Ch. 2.4 - At a certain time, object 1 has an initial...Ch. 2.5 - The equation of motion for an object moving with...Ch. 2.6 - A submerged alligator swims directly toward two...Ch. 2.7 - On a distant, airless planet, an astronaut drops a...Ch. 2 - You take your dog on a walk to a nearby park. On...Ch. 2 - Does an odometer in a car measure distance or...Ch. 2 - An astronaut orbits Earth in the space shuttle. In...
Ch. 2 - After a tennis match the players dash to the net...Ch. 2 - Does a speedometer measure speed or velocity?...Ch. 2 - Is it possible for a car to circle a racetrack...Ch. 2 - For what kinds of motion are the instantaneous and...Ch. 2 - Assume that the brakes in your car create a...Ch. 2 - The velocity of an object is zero at a given...Ch. 2 - If the velocity of an object is nonzero, can its...Ch. 2 - Is it possible for an object to have zero average...Ch. 2 - A batter hits a pop fly straight up. (a) Is the...Ch. 2 - A person on a trampoline bounces straight upward...Ch. 2 - A volcano shoots a lava bomb straight upward. Does...Ch. 2 - Referring to Figure 2-27, you walk from your home...Ch. 2 - In Figure 2-27, you walk from the park to your...Ch. 2 - The two tennis players shown in Figure 2-28 walk...Ch. 2 - The golfer in Figure 2-29 sinks the ball in two...Ch. 2 - A jogger runs on the track shown in Figure 2-30....Ch. 2 - Predict/Calculate A child rides a pony on a...Ch. 2 - Predict/Explain You drive your car in a straight...Ch. 2 - Predict/Explain You drive your car in a straight...Ch. 2 - Usain Bolt of Jamaica set a world record in 2009...Ch. 2 - BIO Kangaroos have been clocked at speeds of 65...Ch. 2 - Rubber Ducks A severe storm on January 10, 1992,...Ch. 2 - Radio waves travel at the speed of light,...Ch. 2 - It was a dark and stormy night, when suddenly you...Ch. 2 - BIO Nerve Impulses The human nervous system can...Ch. 2 - A finch rides on the back of a Galapagos tortoise,...Ch. 2 - You jog at 9.1 km/h for 5.0 km, then you jump into...Ch. 2 - A dog runs back and forth between its two owners,...Ch. 2 - BIO Predict/Calculate Blood flows through a major...Ch. 2 - BIO Predict/Calculate Blood flows through a major...Ch. 2 - In heavy rush-hour traffic you drive in a straight...Ch. 2 - Predict/Calculate An expectant father paces back...Ch. 2 - The position of a particle as a function of time...Ch. 2 - The position of a particle as a function of time...Ch. 2 - Predict/Calculate A tennis player moves back and...Ch. 2 - On your wedding day you leave for the church 30.0...Ch. 2 - The position-versus-time plot of a boat...Ch. 2 - The position of a particle as a function of time...Ch. 2 - The position of a particle as a function of time...Ch. 2 - Predict/Explain On two occasions you accelerate...Ch. 2 - A 747 airliner reaches its takeoff speed of156...Ch. 2 - At the starting gun, a runner accelerates at1.9...Ch. 2 - A jet makes a landing traveling due east with a...Ch. 2 - A car is traveling due north at 23.6 m/s. Find the...Ch. 2 - A motorcycle moves according to the...Ch. 2 - A person on horseback moves according to the...Ch. 2 - Running with an initial velocity of +9.2 m/s, a...Ch. 2 - Predict/Calculate Assume that the brakes in your...Ch. 2 - As a train accelerates away from a station, it...Ch. 2 - A particle has an acceleration of +6.24 m/s2 for...Ch. 2 - Landing with a speed of 71.4 m/s, and traveling...Ch. 2 - When you see a traffic light turn red, you apply...Ch. 2 - A ball is released at the point x = 2 m on an...Ch. 2 - Starting from rest, a boat increases its speed to...Ch. 2 - The position of a car as a function of time is...Ch. 2 - The position of a ball as a function of time is...Ch. 2 - BIO A cheetah can accelerate from rest to 25 0 m/s...Ch. 2 - A sled slides from rest down an icy slope....Ch. 2 - A child slides down a hill on a toboggan with an...Ch. 2 - The Detonator On a ride called the Detonator at...Ch. 2 - Jules Verne In his novel From the Earth to the...Ch. 2 - BIO Bacterial Motion Approximately 0.1% of the...Ch. 2 - Two cars drive on a straight highway. At time t =...Ch. 2 - A Meteorite Strikes On October 9, 1992, a 27-pound...Ch. 2 - A rocket blasts off and moves straight upward from...Ch. 2 - Predict/Calculate You are driving through town at...Ch. 2 - Predict/Calculate You are driving through town at...Ch. 2 - BIO Predict/Calculate A Tongues Acceleration When...Ch. 2 - BIO Surviving a Large Deceleration On July 13,...Ch. 2 - A boat is cruising in a straight line at a...Ch. 2 - A model rocket rises with constant acceleration to...Ch. 2 - The infamous chicken is dashing toward home plate...Ch. 2 - A bicyclist is finishing his repair of a flat tire...Ch. 2 - A car in stop-and-go traffic starts at rest, moves...Ch. 2 - A car and a truck are heading directly toward one...Ch. 2 - Suppose you use videos to analyze the motion of...Ch. 2 - At the edge of a roof you throw ball 1 upward with...Ch. 2 - A cliff diver drops from rest to the water below....Ch. 2 - For a flourish at the end of her act, a juggler...Ch. 2 - Soaring Shaun During the 2014 Olympic games,...Ch. 2 - BIO Gulls are often observed dropping clams and...Ch. 2 - A volcano launches a lava bomb straight upward...Ch. 2 - An Extraterrestrial Volcano The first active...Ch. 2 - BIO Measure Your Reaction Time Heres something you...Ch. 2 - Predict/Explain A carpenter on the roof of a...Ch. 2 - Predict/Explain Figure 2-40 shows a v-versus-t...Ch. 2 - A ball is thrown straight upward with an initial...Ch. 2 - On a hot summer day in the state of Washington...Ch. 2 - Highest Water Fountain The USAs highest fountain...Ch. 2 - Wrongly called for a foul, an angry basketball...Ch. 2 - To celebrate a victory, a pitcher throws her glove...Ch. 2 - Predict/Calculate Standing at the edge of a cliff...Ch. 2 - You shoot an arrow into the air. Two seconds later...Ch. 2 - While riding on an elevator descending with a...Ch. 2 - A hot-air balloon is descending at a rate of 2.3...Ch. 2 - A model rocket blasts off and moves upward with an...Ch. 2 - BIO The southern flying squirrel (Glaucomys...Ch. 2 - Hitting the High Striker A young woman at a...Ch. 2 - While sitting on a tree branch 10.0 m above the...Ch. 2 - An astronaut on the Moon drops a rock straight...Ch. 2 - Taipei 101 An elevator in the Taipei 101...Ch. 2 - A Supersonic Waterfall Geologists have learned of...Ch. 2 - A juggler throws a ball straight up into the air....Ch. 2 - CE At the edge of a roof you drop ball A from...Ch. 2 - CE Two balls start their motion at the same time,...Ch. 2 - CE Refer to the position-versus-time plot in...Ch. 2 - Drop Tower NASA operates a 2.2-second drop tower...Ch. 2 - The velocity-versus-time graph for an object...Ch. 2 - At the 13th green of the U.S. Open you need to...Ch. 2 - A glaucous-winged gull, ascending straight upward...Ch. 2 - A doctor, preparing to give a patient an...Ch. 2 - A hot-air balloon has just lifted off and is...Ch. 2 - Astronauts on a distant planet throw a rock...Ch. 2 - BIO A Jet-Propelled Squid Squids can move through...Ch. 2 - A ball, dropped from rest, covers three-quarters...Ch. 2 - You drop a ski glove from a height h onto fresh...Ch. 2 - To find the height of an overhead power line, you...Ch. 2 - Sitting in a second-story apartment, a physicist...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Referring to Example 2-17 Suppose the speeder (red...Ch. 2 - Referring to Example 2-17 The speeder passes the...Ch. 2 - Predict/Calculate Referring to Example 2-21 (a) In...Ch. 2 - Referring to Example 2-21 Suppose the balloon is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the electric fields in Example 21.2 directly, using the superposition principle and integration. Cons...
Essential University Physics: Volume 2 (3rd Edition)
S
10. FIGURE EX6.10 shows the velocity graph of a 2.0 kg object as it moves along the x-axis. What is the net ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
19. Combining conservation laws. A 15.0 kg block is attached to a very light horizontal spring of force constan...
College Physics (10th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Choose the best answer to each of the following. Explain your reasoning. Which reason of the early universe was...
Cosmic Perspective Fundamentals
The total magnification.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Frogs, with their long, strong legs, are excellent jumpers. And thanks to the good folks of Calaveras County, California, who have a jumping frog contest every year in honor of a Mark Twain story, we have very good data as to just how far a determined frog can jump. The current record holder is Rosie the Ribeter, a bullfrog that made a leap of 2.2 m from a standing start. This compares favorably with the world record for a human, which is a mere 3.7 m. Typical data for a serious leap by a bullfrog look like this: The frog goes into a crouch, then rapidly extends its legs by 15 cm as it pushes off, leaving the ground at an angle of 30° to the horizontal. It’s in the air for 0.49 s before landing at the same height from which it took off. Given this leap, what is the acceleration while the frog is pushing off? How far does the frog jump?arrow_forwardA juggler throws a bowling pin straight up with an initial speed of 6.1 m/s from an initial height of 2.8 m. How much time elapses until the bowling pin returns to the same initial height? Answer without rounding offarrow_forwardA juggler throws a bowling pin straight up with an initial speed of 6 m/s from an initial height of 3.4 m. How much time elapses until the bowling pin returns to the same initial height?arrow_forward
- A dancing policeman performs a stunt by tossing his cap vertically upward with an initial speed of 10 m/s and falls back to his head on its way down. How long will it take the cap to reach the highest point of its path?arrow_forwardCan someone please show step by step solution? Thanksarrow_forwardAn Osprey can fly horizontally (not diving) at a maximum speed of 70.0 km/hr. The bird takes off from rest at the edge of a cliff, heading east, and accelerates at a rate of 1.21 m/s2. The osprey can decelerate at higher rate of 2.43 m/s2. The Osprey can reach top speeds of about 84 mph. When doing so, it does not flap its wings. Rather, it relies on its gravitational force to accelerate it downwards. a. Assuming that it starts from rest, and assuming that drag forces are slim, how long will it take for the osprey to reach its top speed? b. How far does it travel during this time? c. Near the top speed, drag forces become important, and in fact the terminal velocity is determined by the drag force. Assuming that the osprey's body can be modeled as a cylinder, with its cross-sectional area equal to that of a circle with radius of 10 cm, what is the coefficient of drag C for a hawk?arrow_forward
- Suppose I throw a rock horizontally with an initial speed of 30 m/s. Suppose my release point is 2 m above the ground. (a) How long does it take for the rock to hit the ground? (b) How far in the horizontal direction does the rock travel? (c) What is the speed of the rock right before it hits the ground?arrow_forwardTwo children are playing on two trampolines. The first child bounces up one-and-a-half times higher than the second child. The initial speed up of the second child is 4.0 m/s(a) Find the maximum height the second child reaches. (b) What is the initial speed of the first child? (c) How long was the first child in the air?arrow_forwardIn springboard diving, the diver strides out to the end of the board, takes a jump onto its end, and uses the resultant spring-like nature of the board to help propel him into the air. Assume that the diver's motion is essentially vertiacal. He leaves the board, which is 3.0m above the water, with a speed of 6.3m/s. (A) How long is the diver in the air, from the moment he leaves the board until he reaches the water? (B) What is the speed of the diver when he reaches water?arrow_forward
- Dong and Rigo are playing their slingshot, both of them shot a pebble vertically upward. Rigo shot after Dong, but while the Dong’s pebble is still on its way up. The initial speeds are such that both pebbles reach their maximum height at the same instant, although these heights are different. Suppose that the initial speed of the Dong’s pebble is 40.6 m/s and that Rigo’s pebble is shot 1.25s after Dong’s, determined the initial velocity of the Rigo’s pebble.arrow_forwardrocket, on an unknown planet, launches straight upward. Starting from rest, the rocket accelerates until it reaches 25 m/s then maintains that velocity until its boosters shut off. It eventually falls back to the planet. ASSUME: Starting at t = 0, the rocket accelerates upwards a total distance of 10 m, where it reaches an instantaneous velocity of 25 m/s The moment it reaches an instantaneous velocity of 25 m/s, it travels 30 m upward at a constant speed, then the engines cut off. The moment the engines cut off: the rocket is in free fall From the time it initially launches (t = 0) to the time it lands back on the planet is 7 s The acceleration due to gravity is constant on this planet. HOWEVER you may not assume g = 10 m/s2 Air resistance is negligible DETERMINE: The acceleration due to gravity on this planetarrow_forwardA two-stage rocket accelerates from rest at +3.57 m/s/s for 6.82 seconds. It then accelerates at +2.98 m/s/s for another 5.90 seconds. After the second stage, it enters into a state of free fall. Determine: the maximum speed the maximum altitude the height of the rocket after 20.0 seconds the total time the rocket is in the air (assuming it is launched from the ground)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY