Hitting the “High Striker” A young woman at a carnival steps up to the “high striker,” a popular test of strength where the contestant hits one end of a lever with a mallet, propelling a small metal plug upward toward a bell. She gives the mallet a mighty swing and sends the plug to the top of the striker, where it rings the bell. Figure 2-42 shows the corresponding position-versus-time plot for the plug. Using the information given in the plot, answer the following questions: (a) What is the average speed of the plug during its upward journey? (b) By how much does the speed of the plug decrease during its upward journey? (c) What is the initial speed of the plug? (Assume the plug is in free fall during its upward motion, with no effects of air resistance or friction.) Figure 2-42 Problem 87
Hitting the “High Striker” A young woman at a carnival steps up to the “high striker,” a popular test of strength where the contestant hits one end of a lever with a mallet, propelling a small metal plug upward toward a bell. She gives the mallet a mighty swing and sends the plug to the top of the striker, where it rings the bell. Figure 2-42 shows the corresponding position-versus-time plot for the plug. Using the information given in the plot, answer the following questions: (a) What is the average speed of the plug during its upward journey? (b) By how much does the speed of the plug decrease during its upward journey? (c) What is the initial speed of the plug? (Assume the plug is in free fall during its upward motion, with no effects of air resistance or friction.) Figure 2-42 Problem 87
Hitting the “High Striker” A young woman at a carnival steps up to the “high striker,” a popular test of strength where the contestant hits one end of a lever with a mallet, propelling a small metal plug upward toward a bell. She gives the mallet a mighty swing and sends the plug to the top of the striker, where it rings the bell. Figure 2-42 shows the corresponding position-versus-time plot for the plug. Using the information given in the plot, answer the following questions: (a) What is the average speed of the plug during its upward journey? (b) By how much does the speed of the plug decrease during its upward journey? (c) What is the initial speed of the plug? (Assume the plug is in free fall during its upward motion, with no effects of air resistance or friction.)
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative.
Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
[most negative
91 = +1nC
92 = +1nC
91 = -1nC
93 = +1nC
92- +1nC
93 = +1nC
-1nC
92- -1nC
93- -1nC
91= +1nC
92 = +1nC
93=-1nC
91
+1nC
92=-1nC
93=-1nC
91 = +1nC
2 = −1nC
93 = +1nC
The correct ranking cannot be determined.
Reset
Help
most positive
Part A
Find the x-component of the electric field at the origin, point O.
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz =
Η ΑΣΦ
?
N/C
Submit
Part B
Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O?
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz=
Η ΑΣΦ
?
N/C
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.