
Fluid Mechanics (2nd Edition)
2nd Edition
ISBN: 9780134649290
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 78P
To determine
The resultant force acting on the triangular plate A and the location of the center of pressure.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Spur gears
Note : Exam is open notes &tables / Answer all questions.
Q.1. The press shown for Figure.1 has a rated load
of 22 kN. The twin screws have double start Acme
threads, a diameter of 50 mm, and a pitch of 6 mm.
Coefficients of friction are 0.05 for the threads and
0.08 for the collar bearings. Collar diameters are 90
mm. The gears have an efficiency of 95 percent and a
speed ratio of 60:1. A slip clutch, on the motor shaft,
prevents overloading. The full-load motor speed is
1720 rev/min.
(a) When the motor is turned on, how fast will the
press head move? (Vm= , Vser. =
)
(5M)
(b) What should be the horsepower rating of the
motor? (TR=, Tc= Pser. =
"
Bronze
bushings
Foot
Motor
Bearings
watt, Pm= watt, Pm= h.p.) (20M)
2['s
Fig.1
Worm
Collar
bearing
Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.
An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.
Chapter 2 Solutions
Fluid Mechanics (2nd Edition)
Ch. 2 - Prob. 1FPCh. 2 - The container is partially filled with oil, water,...Ch. 2 - The U-tube manometer is filled with mercury,...Ch. 2 - The tube is filled with mercury from A to B, and...Ch. 2 - The air pressure in the pipe at A is 300 kPa....Ch. 2 - Determine the absolute pressure of the water in...Ch. 2 - The bin is 1.5 m wide and is filled with water to...Ch. 2 - The bin is 2 m wide and is filled with oil to the...Ch. 2 - The 2-m-wide container is filled with water to the...Ch. 2 - Determine the resultant force of the water acting...
Ch. 2 - Determine the resultant force of the water acting...Ch. 2 - The tank is filled with water and kerosene to the...Ch. 2 - The 0.5-m-wide inclined plate holds water in a...Ch. 2 - Determine the resultant force the oil exerts on...Ch. 2 - Determine the resultant force the water exerts on...Ch. 2 - The tank has a width of 2 m and is filled with...Ch. 2 - Determine the horizontal and vertical components...Ch. 2 - The plate ABC is 2 m wide. Determine the angle θ...Ch. 2 - The cylindrical cup A of negligible weight...Ch. 2 - The 3-m-wide cart is filled with water to the...Ch. 2 - Prob. 21FPCh. 2 - Prob. 22FPCh. 2 - If the open cylindrical container rotates at ω = 8...Ch. 2 - Prob. 24FPCh. 2 - Prob. 1PCh. 2 - The oil derrick has drilled 5 km into the ground...Ch. 2 - Prob. 3PCh. 2 - Oxygen in a tank has an absolute pressure of 130...Ch. 2 - If the piezometer measures a gage pressure of 10...Ch. 2 - If the absolute pressure in a tank is 140 kPa,...Ch. 2 - The field storage tank is filled with oil. The...Ch. 2 - Prob. 8PCh. 2 - The closed tank was completely filled with carbon...Ch. 2 - The soaking bin contains ethyl alcohol used for...Ch. 2 - The soaking bin contains ethyl alcohol used for...Ch. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - The tank is filled with water and gasoline at a...Ch. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - A liquid has a density that varies with depth h,...Ch. 2 - Prob. 22PCh. 2 - In the troposphere, which extends from sea level...Ch. 2 - Prob. 24PCh. 2 - A heavy cylindrical glass is inverted and then...Ch. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Butyl carbitol, used in the production of...Ch. 2 - Determine the level h′ of water in the tube if the...Ch. 2 - Determine the pressures at points A and B. The...Ch. 2 - Determine the pressure at point C. The containers...Ch. 2 - Determine the difference in pressure pB − pA...Ch. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - A solvent used for plastics manufacturing consists...Ch. 2 - A solvent used for plastics manufacturing consists...Ch. 2 - The inverted U-tube manometer is used to measure...Ch. 2 - Solve Prob. 2-37 if the top segment is filled with...Ch. 2 - The two tanks A and B are connected using a...Ch. 2 - Prob. 40PCh. 2 - Determine the height h of the mercury in the tube...Ch. 2 -
The micro-manometer is used to measure small...Ch. 2 - The Morgan Company manufactures a micro-manometer...Ch. 2 - Determine the difference in pressure pA − pB...Ch. 2 - The pipes at A and B contain oil and the...Ch. 2 - The vertical pipe segment has an inner diameter of...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - The storage tank contains oil and water acting at...Ch. 2 - The uniform rectangular relief gate AB has a...Ch. 2 -
Determine the critical height h of the water...Ch. 2 - A swimming pool has a width of 12 ft and a side...Ch. 2 - Prob. 53PCh. 2 - The uniform control gate AB is pinned at A and...Ch. 2 - Prob. 55PCh. 2 - Determine the critical height h of the water level...Ch. 2 - The gate is 2 ft wide and is pinned at A and held...Ch. 2 - The uniform rectangular relief gate AB has a...Ch. 2 - The tide gate opens automatically when the tide...Ch. 2 - The tide gate opens automatically when the tide...Ch. 2 - The bin is used to store carbon tetrachloride, a...Ch. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - The pressure of the air at A within the closed...Ch. 2 - The uniform plate, which is hinged at C, is used...Ch. 2 - Determine the placement d of the pin on the...Ch. 2 - Determine the placement d of the pin on the...Ch. 2 - The tapered settling tank is filled with oil....Ch. 2 - The tapered settling tank is filled with oil....Ch. 2 - Ethyl alcohol is pumped into the tank, which has...Ch. 2 - The bent plate is 2 m wide and is pinned at A and...Ch. 2 -
The tank is filled to its top with an industrial...Ch. 2 - Solve Prob. 20–72 using the integration...Ch. 2 - If the tank is filled with vegetable oil,...Ch. 2 -
If the tank is filled with vegetable oil,...Ch. 2 - Prob. 76PCh. 2 - Determine the resultant force acting on the...Ch. 2 - Solve Prob. 2-77 using the integration...Ch. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 -
The control gate ACB is pinned at A and rests on...Ch. 2 - Prob. 91PCh. 2 -
The uniform plate, which is hinged at C, is used...Ch. 2 -
The bent plate is 1.5 m wide and is pinned at A...Ch. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - The 5-m-wide overhang is in the form of a...Ch. 2 - Determine the resultant force that water exerts on...Ch. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - A quarter-circular plate is pinned at A and tied...Ch. 2 - Prob. 105PCh. 2 - The semicircular gate is used to control the flow...Ch. 2 - Prob. 107PCh. 2 - Plate AB has a width of 1.5 m and a radius of 3 m....Ch. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Prob. 112PCh. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - Prob. 115PCh. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Prob. 118PCh. 2 - Prob. 119PCh. 2 - Prob. 120PCh. 2 - Prob. 121PCh. 2 - A glass having a diameter of 50 mm is filled with...Ch. 2 - Water in the container is originally at a height...Ch. 2 - Prob. 124PCh. 2 - Prob. 125PCh. 2 - Prob. 126PCh. 2 -
The hot-air balloon contains air having a...Ch. 2 - Prob. 128PCh. 2 - Prob. 129PCh. 2 - Prob. 130PCh. 2 - Prob. 131PCh. 2 - The truck carries an open container of water. If...Ch. 2 - Prob. 133PCh. 2 - The open rail car is 6 ft wide and filled with...Ch. 2 - Prob. 135PCh. 2 -
A large container of benzene is being transported...Ch. 2 - If the truck has a constant acceleration of 2...Ch. 2 - Prob. 138PCh. 2 - Prob. 139PCh. 2 - Prob. 140PCh. 2 - Prob. 141PCh. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Prob. 144PCh. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147PCh. 2 - Prob. 3CPCh. 2 - Prob. 4CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forward
- I need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY