Concept explainers
Two carts are set in motion at t = 0 on a frictionless track in a physics laboratory. The first cart is launched from an initial position of x = 18.0 cm with an initial velocity of 11.8î cm/s and a constant acceleration of –3.40î cm/s2. The second cart is launched from x = 20.0 cm with a constant velocity of 4.30î cm/s.
- a. N What are the times for which the two carts have equal speeds?
- b. N What are the speeds of the carts at that time?
- c. N What are the locations and times at which the carts pass each other?
- d. C What is the difference between what is asked in parts (a) and (c) of this problem with regard to the times you found?
(a)
Time at which two carts moves with same speed.
Answer to Problem 76PQ
Time at which two carts moves with same speed will be
Explanation of Solution
Write the Newton’s equation for velocity for the first cart.
Here,
Write the Newton’s equation for velocity for the second cart.
Here,
Equate the right hand sides’ of above equations.
Rewrite the above equation in terms of
Conclusion:
Substitute
Therefore, the time at which two carts moves with same speed will be
(b)
Speed of carts at that time.
Answer to Problem 76PQ
Both carts will be at the speed of
Explanation of Solution
It is given that the first cart is only accelerating. Second one is moving at fixed velocity,
Therefore, both carts will be at the speed of
(c)
The position and time when the carts pass each other.
Answer to Problem 76PQ
The time is
Explanation of Solution
Write the Newton’s equation for displacement of first cart.
Here,
Write the Newton’s equation for displacement of first cart.
Here,
Equate the right hand sides of above two equations.
Conclusion:
Substitute
Divide the above equation by
Rewrite the above equation in terms of
Substitute
Substitute
Therefore, the time is
(d)
The difference in meaning of question in part (a) and part (b).
Answer to Problem 76PQ
Part (a) asks to find the instant at which carts having same speed and part (b) asks to identify the time at carts will be at the same position.
Explanation of Solution
In part (a), it is asked to find the time at which both carts having the same speed and in part (b), it is asked to find the time at which both carts are at the same location.
From the starting point to a moment just before
Therefore, part (a) asks to find the instant at which carts having same speed and part (b) asks to identify the time at carts will be at the same position.
Want to see more full solutions like this?
Chapter 2 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forward
- ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College