(a)
Interpretation:
Which is more likely to conduct electricity and heat: metal or non-metal should be identified.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(b)
Interpretation:
Which is more likely to accept electrons: metal or non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(c)
Interpretation:
Which is more likely to be malleable in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(d)
Interpretation:
Which is more likely to be gas at room temperature in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(e)
Interpretation:
Which is more likely to be a transition element in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(f)
Interpretation:
Which is more likely to lose electrons in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
EP INTRO.TO GENERAL,ORGANIC...-OWL ACCE
- The SN 1 mechanism starts with the rate-determining step which is the dissociation of the alkyl halide into a carbocation and a halide ion. The next step is the rapid reaction of the carbocation intermediate with the nucleophile; this step completes the nucleophilic substitution stage. The step that follows the nucleophilic substitution is a fast acid-base reaction. The nucleophile now acts as a base to remove the proton from the oxonium ion from the previous step, to give the observed product. Draw a curved arrow mechanism for the reaction, adding steps as necessary. Be sure to include all nonzero formal charges. Cl: Add/Remove step G Click and drag to start drawing a structure.arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardA monochromatic light with a wavelength of 2.5x10-7m strikes a grating containing 10,000 slits/cm. Determine the angular positions of the second-order bright line.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Us the reaction conditions provided and follow the curved arrow to draw the resulting structure(s). Include all lone pairs and charges as appropriate. H :I H 0arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- You have started a patient on a new drug. Each dose introduces 40 pg/mL of drug after redistribution and prior to elimination. This drug is administered at 24 h intervals and has a half life of 24 h. What will the concentration of drug be after each of the first six doses? Show your work a. What is the concentration after the fourth dose? in pg/mL b. What is the concentration after the fifth dose? in pg/mL c. What is the concentration after the sixth dose? in pg/mLarrow_forwardNonearrow_forwardidentify the formal charge in the case. below by indicating the magnitude, sign, and location of the charge magnitude and sign of formal charge location of formal charge (atom number): Narrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning