Concept explainers
(a)
Interpretation:
Based on your knowledge of periodic table and its trends identify / classify the given elements as metals, metalloids and non metals.
Argon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Argon: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Argon: It is a non metal and it cannot lose electron easily.
(b)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Boron.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Boron: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Boron: metalloid, the ionization potential is in between metal and non metals.
(c)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Lead.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Lead: Metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Lead: Metal (
(d)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Arsenic.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Arsenic: Metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Arsenic: Metalloid, the ionization potential is in between metal and non metals.
(e)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Potassium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Potassium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Potassium: metal (alkali metals can easily lose outermost electron to gain noble gas configuration).
(f)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Silicon.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Silicon: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Silicon: metalloid, the ionization potential is in between metal and non metals.
(g)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Iodine.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Iodine: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Iodine: non metal, need one electron to attain noble gas configuration so have high electron gain enthalpy (negative).
(h)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Antimony.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Antimony: metalloid.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Antimony: metalloid, the ionization potential is in between metal and non metals.
(i)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Vanadium.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Vanadium: metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Vanadium: Metal (transition metals have low ionization potential and are metals).
(j)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Sulfur.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Sulfur: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Sulfur: non metal, cannot lose electron easily.
(k)
Interpretation:
Based on your knowledge of periodic table and its trends identify the following element as metals, metalloids and non metals.
Nitrogen.
Concept Introduction:
In periodic table we classify elements as metal, nonmetal and metalloid.
Metals are characterized by low ionization potential. They can easily lose electrons and get oxidized.
Non metals are characterized by negative electron gain enthalpy or less more tendencies to gain electron than to lose electron. So they easily get reduced as compared to metals.
Metalloids have properties in between metals and non metals.
Answer to Problem 41P
Nitrogen: non metal.
Explanation of Solution
The metallic property is related to the tendency to lose electrons.
Lower the ionization potential of an element more the tendency to lose electron and hence more metallic character.
On moving down the group the size increases, effective nuclear charge decreases hence the ionization potential decreases, metallic character increases.
Along period, generally size decreases, effective nuclear charge increases hence the ionization potential increases, metallic character decreases.
Nitrogen: non metal, cannot lose electron easily.
Want to see more full solutions like this?
Chapter 2 Solutions
EP INTRO.TO GENERAL,ORGANIC...-OWL ACCE
- Please correct answer and don't used hand raitingarrow_forwardCalculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forwardGeneral formula etherarrow_forward
- Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward(please correct answer and don't used hand raiting) Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward
- CaTiO3 has a perovskite structure. Calculate the packing factor.Data: ionic radii Co+2 = 0.106 nm, Ti+4 = 0.064 nm, O-2 = 0.132 nm; lattice constant is a = 2(rTi4+ + rO-2).(a) 0.581(b) -0.581(c) 0.254(d) -0.254arrow_forwardIn the initial linear section of the stress-strain curve of a metal or alloy. Explain from the point of view of atomic structure?(a) No, the atomic level properties of the material can never be related to the linear section.(b) The elastic zone is influenced by the strength of the bonds between atoms.(c) The stronger the bond, the less rigid and the lower the Young's Modulus of the material tested.(d) The stronger the bond, the less stress is necessary to apply to the material to deform it elastically.arrow_forwardThe degree of polymerization of polytetrafluoroethylene (Teflon) is 7500 (mers/mol). If all polymer chains have equal length, state the molecular weight of the polymer and the total number of chains in 1000 g of the polymer(a) 50 000 g/mol; 0.03·1020 chains(b) 100 000 g/mol; 1.03·1020 chains(c) 750 000 g/mol; 8.03·1020 chainsarrow_forward
- In natural rubber or polyisoprene, the trans isomer leads to a higher degree of crystallinity and density than the cis isomer of the same polymer, because(a) it is more symmetrical and regular.(b) it is less symmetrical.(c) it is irregular.arrow_forwardMost ceramic materials have low thermal conductivities because:(a) Electron mobility is strongly restricted due to their strong ionic-covalent bonding.(b) False, in general they are excellent thermal conductors (they are used in ovens).(c) Electron mobility is dependent on T and therefore they are poor conductors at high temperatures.(d) Electron mobility is very restricted by secondary bonds.arrow_forwardResistivity and electrical conductivity.(a) In metals, resistivity decreases.(b) In metals, resistivity decreases and conductivity in semiconductors also decreases with increasing temperature.(c) With increasing temperature, resistivity in metals and conductivity in semiconductors also increases.(d) None of the above.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning