EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 61P
To determine
The Mach at the inlet of the heat exchanger.
The Mach at the outlet of the heat exchanger.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air flows steadily through a varying cross-sectional area duct such as a nozzle at a mass flow rate of 10 lb/s. The air enters the duct at a pressure of 200 lb/in2 and 445°F with a low velocity, and it expands in the nozzle to an exit pressure of 30 lb/in2. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that corresponds to an overall pressure drop of 30 lb/in2.
For the specific volume of wet steam, SV=(1-Xv)SV (liq) + XvSV (vapor). Entropy is also calculated this way. If a tank initially has 5kg of wet steam with mass of vapor =1 kg at 100 kPa, and it is heated such that saturated vapor remains in the tank. Assuming that the process is in constant volume, what will be the entropy change of the steam (Kj/K)?
1- An ideal gas with k = 1.4 is flowing through a nozzle such that the Mach number is 2.4 where the flow area is 25 cm2. Assuming the flow to be isentropic, determine the flow area at the location where the Mach number is 1.2
Chapter 2 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 2 - What is the difference between intensive and...Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A 75-L container is filled with 1 kg of air at a...Ch. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...
Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - A cylindrical tank of methanol has a mass of 60kg...Ch. 2 - The combustion in a gasoline engine may be...Ch. 2 - Consider Table 2-1 in the textbook, which lists...Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - Prob. 27CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 33CPCh. 2 - Prob. 34EPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Prob. 37CPCh. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Use the coefficient of volume expansion to...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - Prob. 42PCh. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 47EPCh. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52CPCh. 2 - Prob. 53CPCh. 2 - In which medium will sound travel fastest for a...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - Prob. 59PCh. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 61PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 63PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Prob. 69CPCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 72CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 88PCh. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 92CPCh. 2 - Prob. 93CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 97PCh. 2 - Consider a 0.15-mm diameter air bubble a liquid....Ch. 2 - Prob. 99PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 101EPCh. 2 - Prob. 102PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 106PCh. 2 - Prob. 107EPCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The analysis of a propeller that operates in water...Ch. 2 - A closed tank is partially filled with water at...Ch. 2 - Prob. 112PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - A newly produced pipe with diameter of 3m and...Ch. 2 - Prove that the coefficient of volume expansion for...Ch. 2 - Although liquids, in general, are hard to...Ch. 2 - Air expands isentropically from 200psia and 240F...Ch. 2 - Prob. 120PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - Derive a relation for the capillary rise eta...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - A large plate is pulled at a constant spend of...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - A fluid between two very long parallel plates is...Ch. 2 - The rotating parts of a hydroelectric power plant...Ch. 2 - The viscosity of some fluids changes when a strong...Ch. 2 - Prob. 129PCh. 2 - Prob. 130PCh. 2 - Prob. 131PCh. 2 - Oil of viscosity =0.0357Pas and density...Ch. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Prob. 135PCh. 2 - Prob. 136PCh. 2 - Prob. 137PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - The pressure of water is increased from 100kPa to...Ch. 2 - An ideal gas is compressed isothermally from...Ch. 2 - The variation of the density of a fluid with...Ch. 2 - Prob. 143PCh. 2 - The viscosity of liquids and the viscosity of...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - A 0.6-mm-diameter glass tube is inserted into...Ch. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 155PCh. 2 - Prob. 156PCh. 2 - Prob. 157PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The Airbus A-340 passenger plane has a maximum takeoff weight of about 260,000 kg, a length of 64 m, a wing span of 60 m, a maximum cruising speed of 945 km/h, a seating capacity of 271 passengers, a maximum cruising altitude of 14,000 m, and a maximum range of 12,000 km. The air temperature at the crusing altitude is about −60°C. Determine the Mach number of this plane for the stated limiting conditions.arrow_forward1- Air flows through a device such that the stagnation pressure is 0.6 MPa, the stagnation temperature is 4008C, and the velocity is 570 m/s. Determine the static pressure and temperature of the air at this state.arrow_forward4. Carbon dioxide flows steadily through a varying cross-sectional-area duct such as a nozzle at a mass flow rate of 3 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to a pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the following parameters at each location along the duct that corresponds to a pressure drop of 200 kPa: (i) density; (ii) velocity; (iii) flow area; (iv) mach number. You may assume: • Carbon dioxide is an ideal gas with constant specific heats at room temperature; • Flow through the duct is steady, one-dimensional and isentropic. Use cp=…arrow_forward
- Air flows with negligible friction through a 6-in-diameter duct at a rate of 9 lbm/s. The temperature and pressure at the inlet are T1 = 800 R and P1 = 30 psia, and the Mach number at the exit is Ma2 = 1. Determine the rate of heat transfer and the pressure drop for this section of the duct.arrow_forwardI need the answer as soon as possiblearrow_forwardThermodynamics (Ideal Gas) air enters an ideal nozzle at a pressure of 45 psig with a temperature of 1,340F. The pressure at the nozzle exit is 14.925 psia. If the mass flow rate of air is 8 lm/min, determine the required exit diameter in cm?arrow_forward
- In an ideal nozzle, the enthalpy change of the gas is 69.4 kJ/kg. Assuming the initial velocity is negligible what is the final velocity (Enter your answer to the nearest whole number of m/s)?arrow_forwardConsider a gas with a specific heats ratio of 1.48 at the Mach number of 6.5. Determine the strength (the pressure ratio across the shock, p2/p1) of the normal shock.arrow_forwardCompressed air from the compressor of a gas turbine enters the combustion chamber at T1 = 700 K, P1 = 560 kPa, and Ma1 = 0.2 at a rate of 0.3 kg/s. Via combustion, heat is transferred to the air at a rate of 300 kJ/s as it flows through the duct with negligible friction. Determine the Mach number at the duct exit and the drop in stagnation pressure P01 – P02 during this process. Take the properties of air to be k = 1.4, cp = 1.005 kJ/kg·K, and R = 0.287 kJ/kg·K. The Mach number at the duct exit is____ . The drop in stagnation pressure is____ kPa.arrow_forward
- Carbon dioxide flows steadily through a varying cross-sectional area duct such as a nozzle shown in fig at a mass flow rate of 3.00 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to an exit pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that corresponds to an overall pressure drop of 200 kPa.arrow_forwardAir enters the diffuser with a velocity of 196 m/s. Determine the flow Mach number at the diffuser inlet when the air temperature is 30 Co. Use R=287 J/kgK and k=1.4. Please keep one decimal for the final answer.arrow_forwardAir flowing steadily in a nozzle experiences a normal shock at a Mach number of Ma = 2.6. The pressure and temperature of air are 52 kPa and 270 K, respectively. Now, helium undergoes a normal shock under the same conditions. Calculate the entropy changes of air and helium across the normal shock. The properties of air are R = 0.287 kJ/kg-K and cp= 1.005 kJ/kg-K, and the properties of helium are R=2.0769 kJ/kg-K and cp=5.1926 kJ/kg.K. The entropy change for air is The entropy change for helium is kJ/kg-K. kJ/kg-K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License