Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 53P
An object’s position is given by x = bt + ct3 where b = 1.50 m/s, c = 0.640 m/s3, and t is time in seconds. To study the limiting process leading to the instantaneous velocity, calculate the object’s average velocity over time intervals from (a) 1.00 s to 3.00 s, (b) 1.50 s to 2.50 s, and (c) 1.95 s to 2.05 s, (d) Find the instantaneous velocity as a function of time by differentiating, and compare its value at 2 s with your average velocities.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The velocity of a particle is given by v = 23t2 - 110t + 52, where v is in meters per second and t is in seconds. Plot the velocity v and
acceleration a versus time for the first 6.4 seconds of motion and evaluate the velocity when a is zero. Make the plots and then
answer the questions.
Questions:
When t = 0.8 s,
V =
i
m/s,
a =
i
m/s2
When t = 3.7 s,
V =
i
m/s,
a =
i
m/s?
When t = 4.7 s,
V =
i
m/s,
a =
i
m/s?
When a = 0,
V =
m/s
The position of an object moving along an x axis is given by x = 2 + 2t - 5t 2 + 1t 3, where x is in meters and t is in seconds. What is its average velocity for the time interval t = 1 s and t= 3 s ? (Your answer must be in m/s and include 1 digit after the decimal place. Maximum of %2 of error is accepted in your answer.)
Starting from rest, a particle moving in a straight line has an acceleration of a = (2t−6)m/s^2
,
where t is in seconds. What is the particle’s velocity when t = 6s, and what is its position
when t = 11s? Create a plot for position, velocity, and acceleration versus time, from 0-15s.
(Use integration.)
Chapter 2 Solutions
Essential University Physics
Ch. 2.1 - We just described three trips from Houston to Des...Ch. 2.2 - The figures show position-versus-time graphs for...Ch. 2.3 - An elevator is going up at constant speed, slows...Ch. 2.5 - Standing on a roof, you simultaneously throw one...Ch. 2.6 - The graph shows acceleration versus time for three...Ch. 2 - Under what conditions are average and...Ch. 2 - Does a speedometer measure speed or velocity?Ch. 2 - You check your odometer at the beginning of a days...Ch. 2 - Consider two possible definitions of average...Ch. 2 - Is it possible to be at position x = 0 and still...
Ch. 2 - Is it possible to have zero velocity and still be...Ch. 2 - If you know the initial velocity v0 and the...Ch. 2 - In which of the velocity-versus-time graphs shown...Ch. 2 - If you travel in a straight line at 50 km/h for 1...Ch. 2 - If you travel in a straight line at 50 km/h for 50...Ch. 2 - In 2009, Usain Bolt of Jamaica set a world record...Ch. 2 - Earth’s diameter is approximately 8000 miles....Ch. 2 - Starting front home, you bicycle 24 km north in...Ch. 2 - The Voyager 1 spacecraft is expected to continue...Ch. 2 - Prob. 15ECh. 2 - Whats the conversion factor from meters per second...Ch. 2 - On a single graph, plot distance versus time for...Ch. 2 - For the motion plotted in Fig. 2.15, estimate (a)...Ch. 2 - A model rocket is launched straight upward. Its...Ch. 2 - You’re driving at the 50 km/h speed limit when you...Ch. 2 - Starting from rest, a subway train first...Ch. 2 - Prob. 22ECh. 2 - An egg drops from a second-story window, taking...Ch. 2 - An airplanes takeoff speed is 320 km/h. If its...Ch. 2 - ThrustSSC, the worlds first supersonic car,...Ch. 2 - Youre driving at 70 km/h when you apply constant...Ch. 2 - Prob. 27ECh. 2 - Prob. 28ECh. 2 - Prob. 29ECh. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A car moving initially at 50 mi/h begins slowing...Ch. 2 - In a medical X-ray tube, electrons are accelerated...Ch. 2 - Californias Bay Area Rapid Transit System (BART)...Ch. 2 - Youre driving at speed v0 when you spot a...Ch. 2 - Prob. 35ECh. 2 - Your friend is sitting 6.5 m above you on a tree...Ch. 2 - A model rocket leaves the ground, heading straight...Ch. 2 - A foul ball leaves the bat going straight up at 23...Ch. 2 - A Frisbee is lodged in a tree 6.5 m above the...Ch. 2 - Space pirates kidnap an earthling and hold him on...Ch. 2 - Example 2.3: A jetliner touches down at 288 km/h....Ch. 2 - Prob. 42ECh. 2 - Prob. 43ECh. 2 - Prob. 44ECh. 2 - Example 2.5: A diver drops from a 9.21-m high...Ch. 2 - Prob. 46ECh. 2 - Prob. 47ECh. 2 - Prob. 48ECh. 2 - You allow 40 min to drive 25 mi to the airport,...Ch. 2 - Prob. 50PCh. 2 - You can run 9.0 m/s, 20% faster than your brother....Ch. 2 - Prob. 52PCh. 2 - An objects position is given by x = bt + ct3 where...Ch. 2 - An objects position as a function of time t is...Ch. 2 - In a 400-m drag race, two cars start at the same...Ch. 2 - Squaring Equation 2.7 gives an expression for v2....Ch. 2 - During the complicated sequence that landed the...Ch. 2 - The position of a car in a drag race is measured...Ch. 2 - A fireworks rocket explodes at a height of 82.0 m,...Ch. 2 - The muscles in a grasshoppers legs can propel the...Ch. 2 - On packed snow, computerized antilock brakes can...Ch. 2 - A particle leaves its initial position x0 at time...Ch. 2 - A hockey puck moving at 32 m/s slams through a...Ch. 2 - Prob. 64PCh. 2 - A jetliner touches down at 220 km/h and comes to a...Ch. 2 - A motorist suddenly notices a stalled car and...Ch. 2 - A racing car undergoing constant acceleration...Ch. 2 - The maximum braking acceleration of a car on a dry...Ch. 2 - After 35 min of running, at the 9-km point in a...Ch. 2 - Youre speeding at 85 km/h when you notice that...Ch. 2 - Airbags cushioned the Mars rover Spirits landing,...Ch. 2 - Calculate the speed with which cesium atoms must...Ch. 2 - A falling object travels one-fourth of its total...Ch. 2 - Youre on a NASA team engineering a probe to land...Ch. 2 - Youre atop a building of height h, and a friend is...Ch. 2 - A castles defenders throw rocks down on their...Ch. 2 - Two divers jump from a 3.00-m platform. One jumps...Ch. 2 - A balloon is rising at 10 m/s when its passenger...Ch. 2 - In 2014 the Philae spacecraft became the first...Ch. 2 - Youre at mission control for a rocket launch,...Ch. 2 - Youre an investigator for the National...Ch. 2 - Prob. 82PCh. 2 - Consider an object traversing a distance L, part...Ch. 2 - Prob. 84PCh. 2 - Ice skaters, ballet dancers, and basketball...Ch. 2 - Youre staring idly out your dorm window when you...Ch. 2 - A police radars effective range is 1.0 km, and...Ch. 2 - An object starts moving in a straight line from...Ch. 2 - Youre a consultant on a movie set, and the...Ch. 2 - (a) For the ball in Example 2.6, find its velocity...Ch. 2 - Your roommate is an aspiring novelist and asks...Ch. 2 - Prob. 92PCh. 2 - Derive Equation 2.10 by integrating Equation 2.7...Ch. 2 - An objects acceleration increases quadratically...Ch. 2 - An object’s velocity as a function of time is...Ch. 2 - An objects acceleration decreases exponentially...Ch. 2 - A ball is dropped from rest at a height li0 above...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What type of unconformity separates layer G from layer F?
Applications and Investigations in Earth Science (9th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
WHAT IF What would the discovery of a bacterial species that is a methanogen imply about the evolution of the ...
Campbell Biology (11th Edition)
1. Define and distinguish incomplete penetrance and variable expressivity.
Genetic Analysis: An Integrated Approach (3rd Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
17. For the reaction shown, calculate how many moles of form when each amount of reactant completely reacts.
a...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object moves along the x-axis so its x-coordinate obeys the equation x=at² + bt+c, where a = 11, b = 11, and c = 17. Find the time t when its velocity and acceleration are numerically equal.arrow_forwardThe position of an object as a function of time is given by x = bt2 - ct, where b = 2.0 m/s2 and c = 6.7 m/s, and x and t are in SI units. What is the instantaneous velocity of the object when t = 2.3?arrow_forwardAn object's position in the x-direction as a function of time is given by the expression; x(t) = 5t2 + 2t where are quantities have proper SI Units. What is the object's average velocity in the x-direction between the times t = 1.3 s and t = 2.28 s.arrow_forward
- At an air show, a jet plane has velocity components vx= 695km/h and v y =415km/h at time 4.35 s and v x =938km/h and V y =365km/h at time 7.52s. A)For this time interval, find the xxx component of the plane's average acceleration. b)For this time interval, find the yyy component of the plane's average acceleration. C)For this time interval, find the magnitude of its average acceleration. D)For this time interval, find the direction of its average acceleration.arrow_forwardAt a time t = 0 s, an object is observed at position x = 0 m. Its position along the x axis is described by the expression: x (t) = - 3t + t3, where the units of distance and time are meters and seconds, respectively. How much will the displacement of the object Δx be between t = 1.0 s and t = 3.0 s?arrow_forwardProblem 1: An object is thrown straight up with an initial velocity of 17 m/s. Part (a) How high does it go in meters? Numeric : A numeric value is expected and not an expression. h = Part (b) How long is it in the air in seconds? Numeric : A numeric value is expected and not an expression. t =arrow_forward
- Problem 2: An object is thrown from the top of a building that is 16.4 m high. The object is thrown with a velocity of 7.3 m/s. Part (a) How high above the ground does the object go? Numeric : A numeric value is expected and not an expression. h = Part (b) How long is it in the air in seconds? Numeric : A numeric value is expected and not an expression. t = Part (c) What is the velocity of the object in m/s after 0.5 s? Numeric : A numeric value is expected and not an expression. v = Part (d) What is the velocity of the object in m/s after 1.5 s? Numeric : Anumeric value is expected and not an expression. V = Part (e) What is the velocity of the object in m/s when it reaches the bottom? Numeric : A numeric value is expected and not an expression. V =arrow_forwardAt time t = 0 s, an object is observed at x = 0 m; and its position along the x axis follows this expression: x = –4t + t2, where the units for distance and time are meters and seconds, respectively. What is the object's average speed between t = 0 s and t = 3.0 s ?arrow_forwardAn object moves along the x-axis according to the equation x(t) = (3.00 t² -2.00 +3.00) m, where t is in seconds. Determine: a) the average speed between t = 2.00 s and t = 3.00 s b) the instantaneous speed at t = 2.00 s and at t = 3.00 s c) the average acceleration between t = 2.00 s and t = 3.00 s d) the instantaneous acceleration at t = 2.00 s and t = 3.00 s.arrow_forward
- Some experimental researcher tells us that the position of an object as a function of time is given by x(t) = at3 - bt2 + ct - d, where the constants are a = 3.6 m/s3, b = 4.0 m/s2, c = 60 m/s and d = 7.0 m. Find the average acceleration over the first 2.4 seconds. A) 18 m/s/s B) 54 m/s/s C)36 m/s/s D) 76 m/s/sarrow_forwardthe rocket starts from rest at t=0 and travel straight up. it's height above the ground as a function of time can be approximated by s=bt^2+ct^3, where b and c are constants. at t=10s, the rocket's velocity and acceleration are v= 229m/s and a=28.2 m/s^2 A.) determine the time in seconds at which the rocket reaches supersonic speed (325 m/s) B.) determine the value of constant B C.) determine the value of constant Carrow_forwardA snowboarder starts from rest at the top of a double black diamond hill. As she rides down the slope, GPS coordinates are used to determine her displacement as a function of time: x = 0.5t3 + t2 + 2t, where x and t are expressed in meter and seconds, respectively. Determine the acceleration (m/s²) when t=5 seconds.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY