Concept explainers
A model rocket is launched straight upward with an initial speed of 50.0 m/s. It accelerates with a constant upward acceleration of 2.00 m/s2 until its engines stop at an altitude of 150. m. (a) What can you say about, the motion of the rocket alter its engines stop? (b) What is the maximum height reached by the rocket? (c) How long after liftoff does the rocket reach its maximum height? (d) How long is the rocket in the air?
(a)
Answer to Problem 53P
Explanation of Solution
The motion of the rocket can be determined using the acceleration of the rocket.
When the rocket moves upwards, then the engines forces the rocket to move upwards. When there is no external force acting on the rocket, the rocket is moving under the gravitational force. The magnitude of the acceleration acting on the rocket is the acceleration due to gravity. The acceleration due to gravity acts always downwards.
When the engine stops, the rocket starts moves under the acceleration due to gravity and which is opposite to the direction of the motion. This will slow down the rocket. As the rocket reaches its maximum height, the rocket has zero velocity. Then it falls under gravity. The acceleration and the motion of the rocket go on the same direction. This results in speeding up the rocket from zero to the maximum speed when it reaches the ground.
Conclusion:
After its engines stop, the rocket is a freely falling body under gravity. It continues upward and eventually slows under the influence of gravity. The rocket comes to rest momentarily at its maximum altitude. Then it falls back to Earth, gaining speed as it falls due to the acceleration due to gravity.
(b)
Answer to Problem 53P
Explanation of Solution
Given info: The initial velocity of the of the rocket is
Explanation:
The formula used to calculate the final velocity of the rocket when it is accelerating upwards is,
Here,
Substitute
Thus, The final velocity of the rocket when the engine stops is
The formula used to calculate the displacement of the rocket after the engine stops is,
Here,
Substitute
Thus, The displacement of the rocket after the engine stops is
The formula used to calculate the maximum height the rocket reaches is,
Here,
Substitute
Thus, the maximum height the rocket reaches is
Conclusion:
The maximum height the rocket reaches is
(c)
Answer to Problem 53P
Explanation of Solution
The formula used to calculate the interval at which the rocket moves with an upward acceleration is,
Here,
Substitute
Thus, the time interval at which the rocket has upward acceleration is
The formula used to calculate the interval at which the rocket moves upwards after the engine stops is,
Here,
Substitute
Thus, the time interval at which the rocket moves upward after the engine stops is
The formula used to calculate the total time of the upward flight is,
Here,
Substitute
Thus, the time taken by the rocket to reach the maximum height
Conclusion:
The time taken by the rocket to reach the maximum height
(d)
Answer to Problem 53P
Explanation of Solution
The formula used to calculate the total time of the downward flight is,
Here,
Substitute
Thus, the total time of the downward flight is
The formula used to calculate the total time of flight is,
Here,
Substitute
Thus, the total time the rocket stays in air
Conclusion:
The total time the rocket stays in air
Want to see more full solutions like this?
Chapter 2 Solutions
EBK COLLEGE PHYSICS
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Fundamentals Of Thermodynamics
Loose Leaf For Integrated Principles Of Zoology
MARINE BIOLOGY
Biology: Life on Earth (11th Edition)
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College