The Essential Cosmic Perspective (7th Edition) - Standalone book
7th Edition
ISBN: 9780321928085
Author: Jeffrey O Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 52EAP
Flat Earth Society. Believe it or not, there is an organization called the Flat Earth Society Its members hold that Earth is flat and that all indications to the contrary (such as pictures of Earth from space) are fabrications made as part of a conspiracy to hide the truth from the public. Discuss the evidence for a round Earth and how you can check it for yourself. In light of the evidence, is it possible that the Flat Earth Society is correct? Defend your opinion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 4
Every year over 105 km2 of forest area is lost to human activity. This is about one seventh the area of Texas as shown on the map in red. If our planet has 19.4 x 106 km2 of forest area, how long will it to take to lose it all?
Hint: divide the total forest area by the given rate of deforestation.
Calculations:
Answer:
Question 5
The Great Pacific Garbage Patch is an area of plastic waste twice the size of Texas in the Pacific Ocean. It is estimated there are 1.8 x 1012 pieces of plastic in this patch. If the world’s population is 8 x 109, how many pieces of plastic are there per person?
Hint: divide the total pieces of plastic by the number of people.
Calculations:
Answer:
9, 10
Answer it correctly please. Explain your answer. I will rate accordingly with multiple votes.
Chapter 2 Solutions
The Essential Cosmic Perspective (7th Edition) - Standalone book
Ch. 2 - Prob. 1VSCCh. 2 - Which of the four labeled points represents the...Ch. 2 - Which of the four labeled points represents the...Ch. 2 - The diagram exaggerates the sizes of Earth and the...Ch. 2 - Given that Earths actual distance from the Sun...Ch. 2 - As viewed from Earth, in which zodiac...Ch. 2 - If the date is April 21, what zodiac constellation...Ch. 2 - If the date is April 21, what zodiac constellation...Ch. 2 - Prob. 1EAPCh. 2 - Suppose you were making a model of the celestial...
Ch. 2 - On a clear, dark night, the sky may appear to be...Ch. 2 - Why does the local sky look like a dome? Define...Ch. 2 - Prob. 5EAPCh. 2 - What are circumpolar stars? Are more stars...Ch. 2 - What are latitude and longitude? Does the local...Ch. 2 - What is the zodiac, and why do we see different...Ch. 2 - Suppose Earth’s axis had no tilt. Would we still...Ch. 2 - Briefly describe key facts about the solstices and...Ch. 2 - What is precession? How does it affect our view of...Ch. 2 - Briefly describe the Moons cycle of phases. Can...Ch. 2 - Why do we always see the same face of the Moon?Ch. 2 - Why don’t we see an eclipse at every new and full...Ch. 2 - What do we mean by the apparent retrograde motion...Ch. 2 - Prob. 16EAPCh. 2 - Decide whether the statement makes sense (or is...Ch. 2 - Prob. 18EAPCh. 2 - Decide whether the statement makes sense (or is...Ch. 2 - Prob. 20EAPCh. 2 - Decide whether the statement makes sense (or is...Ch. 2 - Decide whether the statement makes sense (or is...Ch. 2 - Prob. 23EAPCh. 2 - Decide whether the statement makes sense (or is...Ch. 2 - Decide whether the statement makes sense (or is...Ch. 2 - Decide whether the statement makes sense (or is...Ch. 2 - Two stars that are in the same constellation (a)...Ch. 2 - The north celestial pole is 35° above your...Ch. 2 - Beijing and Philadelphia have about the same...Ch. 2 - In winter, Earth’s axis points toward the star...Ch. 2 - When it is summer in Australia, the season in the...Ch. 2 - If the Sun rises precisely due east. (a) you must...Ch. 2 - A week after full moon, the Moon’s phase is (a)...Ch. 2 - The fact that we always see the same face of the...Ch. 2 - If there is going to be a total lunar eclipse...Ch. 2 - When we see Saturn going through a period of...Ch. 2 - Prob. 37EAPCh. 2 - Prob. 38EAPCh. 2 - 39. Lunar Phases and Time of Day. Roles: Scribe...Ch. 2 - Prob. 40EAPCh. 2 - Your View of the Sky. a. What are your latitude...Ch. 2 - View from the Moon. Suppose you lived on the Moon,...Ch. 2 - View from the Sun. Suppose you lived on the Sun...Ch. 2 - Farther Moon. Suppose the distance to the Moon...Ch. 2 - Smaller Earth. Suppose Earth were smaller. Would...Ch. 2 - Prob. 46EAPCh. 2 - Prob. 47EAPCh. 2 - Find the Sun’s Diameter. The Sun has an angular...Ch. 2 - Prob. 49EAPCh. 2 - Prob. 50EAPCh. 2 - Prob. 51EAPCh. 2 - Flat Earth Society. Believe it or not, there is an...Ch. 2 - Prob. 53EAPCh. 2 - Prob. 54EAPCh. 2 - Prob. 55EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Give me the right answer please and thank you, take your timeCalculate the amount of time it takes for light reflected off the surface of a distant planet to reach us.1. Sunlight takes about 8.3 minutes to travel from the Sun to Earth. What is the Sun-Earth distance in AU? (Give your answer rounded to the nearest AU).2.Light is reflected off the surface of a planet 5.2 AU away from us. How long does it take this light to reach us from the planet? Give your answer in minutes, rounded to exactly one decimal place.arrow_forwardThis is Pre-Calc! Please help and Thank you! Please click the pics for the background info Directions: Answer questions 1-8 based on the information on Table 1. Round all answers to the nearest thousandth and label with the appropriate units. 1. According to Table 1, what is the closest distance between Earth and Mars? 2. According to Table 1, what is the farthest distance between Earth and Mars? 3. Based on your answers from #2 and #3, what is the average distance between the two planets? 4. Based on your answers from #2 and #3, what is the amplitude of the distances? 5. The distance has a period of 772 days. Write a sinusoidal equation relating the number of days and distance from Earth to Mars. 6. Based on the equation from #5, what is the distance between our planets on Mr. Schutt’s birthday (day 187)? 7. Write a sinusoidal equation relating the number of days and the one-waycommunication between Earth to Mars. 8. What is the one-way communication time delay between our planets on…arrow_forwardbetween a planet and its moon. Procedure/Analysis: Go to: https://www.physicsclassroom.com/Physics-Interactives/Circular-and-Satellite- Motion/Gravitational-Fields/Gravitational-Fields-Interactive Use the program to answer the following questions. 1. A planet and its moon are shown in the simulation window. Click and drag the moon to various positions about the planet and observe the gravitational force vector. In the diagram below, draw a force vector (arrow with arrowhead) to depict the direction and relative magnitude of the force acting upon the moon at the designated locations. Note: the size of the arrow should be representative of the strength of the force.arrow_forward
- After reducing the Planet Mass to 0.5, we observe the subsequent motions. How are the orbits of the Earth and Moon affected? Summarize observations and explain why. A website for the simulation shown in the image: https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.htmlarrow_forwardMilestone A: Walk 3.2 km (~2 miles) towards northeast. Milestone B: Walk 1.3 km towards southeast. Milestone C: Walk 2.4 km directly south. Surprise at the end! You have arrived at the treasure! Distance: What is the total distance traveled if you walk the distance A, B, C? Give your answer in km and miles. 2. Direction: a. what is meant by “north east?” b. what direction would this be on a cartesian coordinate system? c. What is meant by “south east?” d. What direction would this be on a cartesian coordinate system? e. What about “south”? f. What direction on cartesian coordinate system? 3. Draw the diagram: include drawing the resultant a. What does the resultant vector represent? 4. Calculate: use trigonometry to find the displacement.arrow_forward3 30 4 Name: Show all calculations and formula used. Submit in word and or pdf format, express all answers in sig figure And scientific notation. Box the final answer, if you box out other figures aside from the final answer then your answer is not clear and will be considered wrong. Use this format in your submission. Proper orientation of paper is required. Not following instructions will earn a demerit. DO NOT USE YELLOW PAPER | 1. A roller coaster is dragged up to point 1 where it is released from rest. Find the speed |(m/s) in point 4. (See figure above)arrow_forward
- - How far (in km) is 3.5 lightyears(ly) – the distance traveled by light in one Earth year? - How much is this same value in parsecs and (C) in astronomical units (AU)? Use 299,732 km/s for the speed of light (c) and 1 year = 365 days. Show your solution and write your answer in both regular notation and scientific notation.arrow_forwardMars is 1.5 times as far away from the Sun as Earth. Earth’s axis is tilted at 23.5o compared to the ecliptic. The axis of Mars is tilted at 25o compared to the ecliptic. The atmosphere on Earth is 100 times as thick as the atmosphere on Mars. Which of the following statements is true? 1.)Mars is so cold that the water there is ice, while Earth does not have any ice 2.)When it is summer in Earth’s northern hemisphere, it is winter on Mars’ southern hemisphere 3.) Earth has seasons, Mars does not 4.) All of the water on Mars is frozen, while Earth has water in solid, liquid and gas formarrow_forwardSuppose you were given a 3 in diameter ball to represent the Earth and a 1 in diameter ball to represent the Moon. (The actual ratio of Earth diameter to Moon diameter is 3.7 to 1.) The actual average Earth–Moon distance is about 384,000 kilometers, and Earth’s diameter is about 12,800 kilometers. How many “Earth diameters” is the distance from Earth to the Moon? Based on your answer to Question 2, what is the correct scaled distance of the Moon, using the 3-inch ball as Earth? The Sun’s actual diameter is about 1,400,000 kilometers. How many “Earth diameters” is this? Given your 3-inch Earth, how large (i.e what diameter) of a ball would you need to represent the Sun? Give your answer in feet. The average Earth–Sun distance is about 149,600,000 km. To represent this distance to scale, how far away would you have to place your 3-inch Earth from your Sun? Give your answer in feet. Could we use this scale to visualize the solar system instead of just the Earth and Moon? Why or Why…arrow_forward
- What do we mean by apparent retrograde motion of planets? Why was it difficult for ancient astronomers to explain? How do we explain it today?arrow_forwardhow do you compare us with people from the moon. Explain?arrow_forwardHow can sciences be integrated in designing a water arc? Elaborate in complete sentences. i want a lot of reasons not only 1 reason like gravity or physics i want you to provide me with more reasons please and as it said Elaborate in complete sentencesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY