(a)
Interpretation: The physical state of gold at room temperature needs to be determined.
Concept Introduction: There are generally three
Gold is solid at room temperature.
Gold is a metal. They are generally solid at room temperature. Also, the melting point of gold is
Therefore, the physical state of gold at room temperature is solid.
(b)
Interpretation: The physical state of gasoline at room temperature needs to be determined.
Concept Introduction: There are generally three states of matter that is solid, liquid and gas. Substances that are solid at room temperature have high melting and boiling points. Melting point is defined as the temperature at which a solid substance starts melting. The boiling point is defined as the temperature of a liquid when its vapor pressure is equal to the atmospheric pressure. This is the temperature when liquid starts boiling and converts into vapor.
Gasoline is liquid at room temperature.
Gasoline is a fuel that is generally composed of crude oil and other petroleum liquids. The boiling point is around
(c)
Interpretation: The physical state of oxygen at room temperature needs to be determined.
Concept Introduction: There are generally three states of matter that is solid, liquid and gas. Substances that are solid at room temperature have high melting and boiling points. Melting point is defined as the temperature at which a solid substance starts melting. The boiling point is defined as the temperature of a liquid when its vapor pressure is equal to the atmospheric pressure. This is the temperature when liquid starts boiling and converts into vapor.
Oxygen is gas at room temperature.
Oxygen is a non-metal. Non-metals are generally gases. Here, the boiling point of oxygen is
(d)
Interpretation: The physical state of neon at room temperature needs to be determined.
Concept Introduction: There are generally three states of matter that is solid, liquid and gas. Substances that are solid at room temperature have high melting and boiling points. Melting point is defined as the temperature at which a solid substance starts melting. The boiling point is defined as the temperature of a liquid when its vapor pressure is equal to the atmospheric pressure. This is the temperature when liquid starts boiling and converts into vapor.
Neon is gas at room temperature.
Neon is a noble gas. The melting point and boiling point of neon is
(e)
Interpretation: The physical state of olive oil at room temperature needs to be determined.
Concept Introduction: There are generally three states of matter that is solid, liquid and gas. Substances that are solid at room temperature have high melting and boiling points. Melting point is defined as the temperature at which a solid substance starts melting. The boiling point is defined as the temperature of a liquid when its vapor pressure is equal to the atmospheric pressure. This is the temperature when liquid starts boiling and converts into vapor.
Olive oil is liquid at room temperature.
The boiling point of olive oil is around
(f)
Interpretation: The physical state of sulfur at room temperature needs to be determined.
Concept Introduction: There are generally three states of matter that is solid, liquid and gas. Substances that are solid at room temperature have high melting and boiling points. Melting point is defined as the temperature at which a solid substance starts melting. The boiling point is defined as the temperature of a liquid when its vapor pressure is equal to the atmospheric pressure. This is the temperature when liquid starts boiling and converts into vapor.
Sulphur is solid at room temperature.
Sulphur is a non-metal. The melting point of sulphur is
(g)
Interpretation: The physical state of mercury at room temperature needs to be determined.
Concept Introduction: There are generally three states of matter that is solid, liquid and gas. Substances that are solid at room temperature have high melting and boiling points. Melting point is defined as the temperature at which a solid substance starts melting. The boiling point is defined as the temperature of a liquid when its vapor pressure is equal to the atmospheric pressure. This is the temperature when liquid starts boiling and converts into vapor.
Mercury is liquid at room temperature.
The melting and boiling point of mercury is
Chapter 2 Solutions
EP CHEMISTRY-1-YEAR LICENSE (REALIZE)
- Aiter running various experiments, you determine that the mechanism for the following reaction is bimolecular. CI Using this information, draw the correct mechanism in the space below. X Explanation Check C Cl OH + CI Add/Remove step Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Carrow_forwardComplete the reaction in the fewest number of steps as possible, Draw all intermediates (In the same form as the picture provided) and provide all reagents.arrow_forwardPlease provide steps to work for complete understanding.arrow_forward
- Please provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardA certain chemical reaction releases 24.7 kJ/g of heat for each gram of reactant consumed. How can you calculate what mass of reactant will produce 1460. J of heat? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols. mass M 0.0 x μ 00 1 Garrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY