
a.
Check whether 7 classes would be used to create a frequency distribution using the
a.

Answer to Problem 3SR
The number of classes for the frequency distribution that consists of 73 observations is 7.
Explanation of Solution
Selection of number of classes:
The “2 to the k rule” suggests that the number of classes is the smallest value of k, where
It is given that the data set consists of 73 observations. The value of k can be obtained as follows:
Here,
Therefore, the number of classes for the frequency distribution that consists of 73 observations is 7.
b.
Check whether the class interval of 30 would summarize the data in 7 classes.
b.

Answer to Problem 3SR
The reasonable class interval is 30.
Explanation of Solution
From the given data set, the maximum and minimum values are 488 and 320, respectively.
The formula for the class interval is given as follows:
Where, i is the class interval and k is the number of classes.
Therefore, the class interval for the given data can be obtained as follows:
In practice, the class interval size is usually rounded up to some convenient number such as a multiple of 10 or 100. Therefore, the reasonable class interval is 30.
c.
Construct a frequency and relative frequency table for the given data.
c.

Answer to Problem 3SR
The frequency and relative frequency table for the given data are as follows:
Class | Frequency | Relative Frequency |
300-330 | 2 | |
330-360 | 2 | |
360-390 | 17 | |
390-420 | 27 | |
420-450 | 22 | |
450-480 | 1 | |
480-510 | 2 | |
Total | 73 | 1 |
Explanation of Solution
Frequency table:
The frequency table is a collection of mutually exclusive and exhaustive classes that show the number of observations in each class.
It is given that the lower limit of the first class is 300. From Part (b), the class interval is 30. The frequency table of the 73 home runs can be constructed as follows:
Class | Frequency | Relative Frequency |
300-330 | 2 | |
330-360 | 2 | |
360-390 | 17 | |
390-420 | 27 | |
420-450 | 22 | |
450-480 | 1 | |
480-510 | 2 | |
Total | 73 | 1 |
d.
Find the number of home runs traveled at a distance of 360 up to 390 feet.
d.

Answer to Problem 3SR
The number of home runs traveled at a distance of 360 up to 390 feet is 17.
Explanation of Solution
From the frequency table in Part (c), the frequency value of the class 360-390 is 17. Therefore, the number of home runs traveled at a distance of 360 up to 390 feet is 17.
e.
Calculate the percentage of the number of home runs traveled at a distance of 360 up to 390 feet.
e.

Answer to Problem 3SR
The percentage of the number of home runs traveled at a distance of 360 up to 390 feet is 23.288%.
Explanation of Solution
From the frequency table in Part (c), the frequency value of the class 360-390 is 17. The total number of observations is 73. The value of 17 home runs traveled can be converted into percentage as follows:
Therefore, percentage of the number of home runs traveled at a distance of 360 up to 390 feet is 23.288%.
f.
Calculate the percentage of the number of home runs traveled at a distance of 390 feet or more.
f.

Answer to Problem 3SR
The percentage of the number of home runs traveled at a distance of 390 feet or more is 71.233%.
Explanation of Solution
From the frequency table in Part (c), the sum of all the frequencies of the classes 390-420 and above is given below:
The total number of observations is 73. The value of 52 home runs traveled can be converted into percentage as follows:
Therefore, percentage of the number of home runs traveled at a distance of 390 feet or more is 71.233%.
Want to see more full solutions like this?
Chapter 2 Solutions
Loose Leaf for Statistical Techniques in Business and Economics (Mcgraw-hill/Irwin Series in Operations and Decision Sciences)
- 1 No. 2 3 4 Binomial Prob. X n P Answer 5 6 4 7 8 9 10 12345678 8 3 4 2 2552 10 0.7 0.233 0.3 0.132 7 0.6 0.290 20 0.02 0.053 150 1000 0.15 0.035 8 7 10 0.7 0.383 11 9 3 5 0.3 0.132 12 10 4 7 0.6 0.290 13 Poisson Probability 14 X lambda Answer 18 4 19 20 21 22 23 9 15 16 17 3 1234567829 3 2 0.180 2 1.5 0.251 12 10 0.095 5 3 0.101 7 4 0.060 3 2 0.180 2 1.5 0.251 24 10 12 10 0.095arrow_forwardstep by step on Microssoft on how to put this in excel and the answers please Find binomial probability if: x = 8, n = 10, p = 0.7 x= 3, n=5, p = 0.3 x = 4, n=7, p = 0.6 Quality Control: A factory produces light bulbs with a 2% defect rate. If a random sample of 20 bulbs is tested, what is the probability that exactly 2 bulbs are defective? (hint: p=2% or 0.02; x =2, n=20; use the same logic for the following problems) Marketing Campaign: A marketing company sends out 1,000 promotional emails. The probability of any email being opened is 0.15. What is the probability that exactly 150 emails will be opened? (hint: total emails or n=1000, x =150) Customer Satisfaction: A survey shows that 70% of customers are satisfied with a new product. Out of 10 randomly selected customers, what is the probability that at least 8 are satisfied? (hint: One of the keyword in this question is “at least 8”, it is not “exactly 8”, the correct formula for this should be = 1- (binom.dist(7, 10, 0.7,…arrow_forwardKate, Luke, Mary and Nancy are sharing a cake. The cake had previously been divided into four slices (s1, s2, s3 and s4). What is an example of fair division of the cake S1 S2 S3 S4 Kate $4.00 $6.00 $6.00 $4.00 Luke $5.30 $5.00 $5.25 $5.45 Mary $4.25 $4.50 $3.50 $3.75 Nancy $6.00 $4.00 $4.00 $6.00arrow_forward
- Faye cuts the sandwich in two fair shares to her. What is the first half s1arrow_forwardQuestion 2. An American option on a stock has payoff given by F = f(St) when it is exercised at time t. We know that the function f is convex. A person claims that because of convexity, it is optimal to exercise at expiration T. Do you agree with them?arrow_forwardQuestion 4. We consider a CRR model with So == 5 and up and down factors u = 1.03 and d = 0.96. We consider the interest rate r = 4% (over one period). Is this a suitable CRR model? (Explain your answer.)arrow_forward
- Question 3. We want to price a put option with strike price K and expiration T. Two financial advisors estimate the parameters with two different statistical methods: they obtain the same return rate μ, the same volatility σ, but the first advisor has interest r₁ and the second advisor has interest rate r2 (r1>r2). They both use a CRR model with the same number of periods to price the option. Which advisor will get the larger price? (Explain your answer.)arrow_forwardQuestion 5. We consider a put option with strike price K and expiration T. This option is priced using a 1-period CRR model. We consider r > 0, and σ > 0 very large. What is the approximate price of the option? In other words, what is the limit of the price of the option as σ∞. (Briefly justify your answer.)arrow_forwardQuestion 6. You collect daily data for the stock of a company Z over the past 4 months (i.e. 80 days) and calculate the log-returns (yk)/(-1. You want to build a CRR model for the evolution of the stock. The expected value and standard deviation of the log-returns are y = 0.06 and Sy 0.1. The money market interest rate is r = 0.04. Determine the risk-neutral probability of the model.arrow_forward
- Several markets (Japan, Switzerland) introduced negative interest rates on their money market. In this problem, we will consider an annual interest rate r < 0. We consider a stock modeled by an N-period CRR model where each period is 1 year (At = 1) and the up and down factors are u and d. (a) We consider an American put option with strike price K and expiration T. Prove that if <0, the optimal strategy is to wait until expiration T to exercise.arrow_forwardWe consider an N-period CRR model where each period is 1 year (At = 1), the up factor is u = 0.1, the down factor is d = e−0.3 and r = 0. We remind you that in the CRR model, the stock price at time tn is modeled (under P) by Sta = So exp (μtn + σ√AtZn), where (Zn) is a simple symmetric random walk. (a) Find the parameters μ and σ for the CRR model described above. (b) Find P Ste So 55/50 € > 1). StN (c) Find lim P 804-N (d) Determine q. (You can use e- 1 x.) Ste (e) Find Q So (f) Find lim Q 004-N StN Soarrow_forwardIn this problem, we consider a 3-period stock market model with evolution given in Fig. 1 below. Each period corresponds to one year. The interest rate is r = 0%. 16 22 28 12 16 12 8 4 2 time Figure 1: Stock evolution for Problem 1. (a) A colleague notices that in the model above, a movement up-down leads to the same value as a movement down-up. He concludes that the model is a CRR model. Is your colleague correct? (Explain your answer.) (b) We consider a European put with strike price K = 10 and expiration T = 3 years. Find the price of this option at time 0. Provide the replicating portfolio for the first period. (c) In addition to the call above, we also consider a European call with strike price K = 10 and expiration T = 3 years. Which one has the highest price? (It is not necessary to provide the price of the call.) (d) We now assume a yearly interest rate r = 25%. We consider a Bermudan put option with strike price K = 10. It works like a standard put, but you can exercise it…arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning





