Physics of Everyday Phenomena
9th Edition
ISBN: 9781260048469
Author: Griffith
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 32CQ
A car starts from rest, accelerates uniformly for 5 seconds, travels at constant velocity for 5 seconds, and finally decelerates uniformly for 5 seconds. Sketch graphs of velocity versus time and acceleration versus time for this situation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object, at time equal zero, has a velocity of 2.0 m/s and constant acceleration of 3.08 m/s².
How far does it travel in 8 seconds?
Do not write the units in your answer, but your answer should be in meters.
A turtle and a rabbit engage in a footrace over a distance of 4km. The rabbit runs 0.5km and then stops for a 90-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total time of 1.75h, the rabbit wins the race. Calculate the average speed of the rabbit
A car starts from rest and accelerates at a constant 10 m/s2 during aquarter-mile (402 m) race. How fast is the car going at the finish line?
I know the answer to this problem is 90 m/s, but I don't know how the book i found it in came to this answer. How am I supposed to solve this problem without knowing either final velocity or time?
Chapter 2 Solutions
Physics of Everyday Phenomena
Ch. 2 - Prob. 1CQCh. 2 - Suppose we choose inches as our basic unit of...Ch. 2 - What units would have an appropriate size for...Ch. 2 - A tortoise and a hare cover the same distance in a...Ch. 2 - A driver states that she was doing 80 when stopped...Ch. 2 - Does the speedometer on a car measure average...Ch. 2 - Is the average speed over several minutes more...Ch. 2 - The highway patrol sometimes uses radar guns to...Ch. 2 - Is the term vehicle density (as used in everyday...Ch. 2 - Prob. 10CQ
Ch. 2 - At the front end of a traffic jam, is the vehicle...Ch. 2 - A hockey puck is sliding on frictionless ice. It...Ch. 2 - A ball attached to a string is whirled in a...Ch. 2 - Prob. 14CQCh. 2 - A dropped ball gains speed as it falls. Can the...Ch. 2 - A driver of a car steps on the brakes, causing the...Ch. 2 - At a given instant in time, two cars are traveling...Ch. 2 - A car just starting up from a stop sign has zero...Ch. 2 - A car traveling with constant speed rounds a curve...Ch. 2 - A racing sports car traveling with a constant...Ch. 2 - In the graph shown here, velocity is plotted as a...Ch. 2 - A car moves along a straight line so that its...Ch. 2 - For the car whose distance is plotted against time...Ch. 2 - A car moves along a straight section of road so...Ch. 2 - For the car whose velocity is plotted in question...Ch. 2 - Look again at the velocity-versus-time graph for...Ch. 2 - Suppose the acceleration of a car increases with...Ch. 2 - When a car accelerates uniformly from rest, which...Ch. 2 - The velocity-versus-time graph of an object curves...Ch. 2 - For a uniformly accelerated car, is the average...Ch. 2 - A car traveling in the forward direction...Ch. 2 - A car starts from rest, accelerates uniformly for...Ch. 2 - Suppose that two runners run a 100-meter dash, but...Ch. 2 - Sketch a graph showing velocity-versus-time curves...Ch. 2 - A physics instructor walks with increasing speed...Ch. 2 - Prob. 36CQCh. 2 - Return to example box 2.4, but this time assume...Ch. 2 - A traveler covers a distance of 413 miles in a...Ch. 2 - A walker covers a distance of 2.4 km in a time of...Ch. 2 - Grass clippings are found to have an average...Ch. 2 - A driver drives for 2.5 hours at an average speed...Ch. 2 - A woman walks a distance of 504 m, with an average...Ch. 2 - A person in a hurry averages 70 MPH on a trip...Ch. 2 - A hiker walks with an average speed of 1.3 m/s....Ch. 2 - Prob. 8ECh. 2 - A car travels with an average speed of 65 MPH....Ch. 2 - Starting from rest and moving in a straight line,...Ch. 2 - Starting from rest, a car accelerates at a rate of...Ch. 2 - The velocity of a car decreases from 28 m/s to 20...Ch. 2 - A car traveling with an initial velocity of 16 m/s...Ch. 2 - A runner traveling with an initial velocity of 1.1...Ch. 2 - A car moving with an initial velocity of 32 m/s...Ch. 2 - A runner moving with an initial velocity of 4.0...Ch. 2 - If a world-class sprinter ran a distance of 100...Ch. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A railroad engine moves forward along a straight...Ch. 2 - The velocity of a car increases with time, as...Ch. 2 - A car traveling due west on a straight road...Ch. 2 - A car traveling in a straight line with an initial...Ch. 2 - Just as car A is starting up, it is passed by car...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A motor bike moves in a straight line,accelerating uniformly at 3.0m/s² for 10s,moving at a constant speed of 30m/s for a further 20s, and finally decelerating at a constant rate of 2m/s² until coming to a rest.Draw a velocity time graph for this motion and hence determine total distance traveled during the entire journey.arrow_forwardCar A is moving with a constant velocity 6.17 m/s while Car B starts from rest and accelerates with a constant acceleration 2.4 m/s2. They both start at the same position. How long in seconds before Car B overtake Car A? Express your answer rounded off to two decimal places. Do not include the unit.arrow_forwardboy walks 300m in a straight line in three stages: for the first 100m he starts from rest and accelerates at 0.6m/s2 for 30 seconds until he reaches a certain speed, then maintains that speed for the next 100m and then starts to slow down with constant acceleration. until stop. He calculates the average speed of the entire trip.arrow_forward
- A woman backs her van out of her parking space with a constant acceleration of 1.8 m/s2. Assume that her initial motion is in the positive direction. Part A: How long does it take her to reach a speed of 2.1 m/s in seconds? Part B: If she then brakes to a stop in 0.65 s, what is her acceleration in meters per square second?arrow_forwardOne simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.5 m/s in 2.24 s , what will be his total time? Express your answer in seconds.arrow_forwardThe patient attends physiotherapy procedures at the clinic every day. Every morning he leaves the house at the same time and moves at a constant velocity 2,5 km/h. Once, leaving the house on time, the patient, on the 1/2 part of the way, remembered that he had forgotten the documents at home and decided to return home. How fast does the patient have to move in order to be in time for the beginning of the procedure? Please enter the correct units of measurement.arrow_forward
- A car starts from rest at t = 0 s, and speeds up with a constant acceleration of 1.66 m/s2 for 6.00 s. Then it continues with a uniform speed for another 6.00 s. Finally, it speeds up with a constant acceleration of 2.17 m/s2 until it reaches a speed of 18.0 m/s. (a) Draw the velocity vs. time and acceleration vs. time graphs for this motion. Numerical values on the graphs are not required.(b) How long does it take for the car to reach a speed of 18.0 m/s? Time is measured from the beginning at t = 0 s (c) What is the total displacement of the car?arrow_forwardA car starts from rest at t = 0 s, and speeds up with a constant acceleration of 1.66 m/s2 for 6.00 s. Then it continues with a uniform speed for another 6.00 s. Finally, it speeds up with a constant acceleration of 2.17 m/s2 until it reaches a speed of 18.0 m/s. (a) Draw the velocity vs. time and acceleration vs. time graphs for this motion. Numerical values on the graphs are not required.(b) How long does it take for the car to reach a speed of 18.0 m/s? Time is measured from the beginning at t = 0 s(c) What is the total displacement of the car?arrow_forwardSketch the velocity-versus-time graph for a car that accelerates uniformly from rest to 30 m/s in 5 seconds. The car remains at this constant velocity for the next 6 seconds. During the following 9 seconds, the car then slows down uniformly until its velocity become -10 m/s. During the last 3 seconds, the car comes to a complete stop uniformly.arrow_forward
- In heavy rush-hour traffic, you drive in a straight line at 12 m/s for 1.5 minutes, then you have to stop for 3.5 minutes, and finally, you drive at 15 m/s for another 2.5 minutes. Plot a position-versus-time graph for this motion. Your plot should extend from t = 0 minutes to t = 7.5 minutes. Assume x=0 and t=0 at the start of your motion.arrow_forwardBob is cruising leisurely on his bike at 2.4 m/s when Jim passes him, traveling at a constant 10.2 m/s. Bob immediately begins accelerating at 2.2 m/s2 until he reaches his maximum velocity of 13.5 m/s. He continues cruising at that speed until he catches Jim. How long did it take him to catch up to Jim? (Assume the clock started at the instant he began to accelerate.) t = How far did he have to go to catch up to Jim? Ax =arrow_forwardA plane starts from rest at one end of a 600 meter long runway and accelerates to a speed of 105 meters per second at the other end of the runway. Assuming that the acceleration of the plane is constant, how much time does the plane spend on the runway? Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY