Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305638686
Author: H. Stephen Stoker
Publisher: Brooks Cole
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2.9EP

(a)

Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

(a)

Expert Solution
Check Mark

Answer to Problem 2.9EP

The molecular formula of the given alkene is C4H8.

Explanation of Solution

Alkenes are one of the types of unsaturated hydrocarbon.  Alkenes contain double bond as the functional group.  General molecular formula of alkene which contains one double bond is CnH2n.

Given hydrocarbon in the problem statement is said to have 4-carbon alkene with one double bond.  Hence, “n” is 4.  Substituting it in the general molecular formula as shown below gives the molecular formula of alkene,

    CnH2nC4H(2*4)C4H8

Therefore, the molecular formula of alkene that contains four carbon atoms with a double bond is C4H8.

Conclusion

The molecular formula of the given alkene is identified.

(b)

Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

(b)

Expert Solution
Check Mark

Answer to Problem 2.9EP

The molecular formula of the given alkene is C4H6.

Explanation of Solution

Alkenes are one of the types of unsaturated hydrocarbon.  Alkenes contain double bond as the functional group.  General molecular formula of alkene which contains two double bond is CnH2n-2.

Given hydrocarbon in the problem statement is said to have 4-carbon alkene with two double bonds.  Hence, “n” is 4.  Substituting it in the general molecular formula as shown below gives the molecular formula of alkene,

    CnH2n-2C4H(2*4)2C4H6

Therefore, the molecular formula of alkene that contains four carbon atoms with a double bond is C4H6.

Conclusion

The molecular formula of the given alkene is identified.

(c)

Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

(c)

Expert Solution
Check Mark

Answer to Problem 2.9EP

The molecular formula of the given cycloalkene is C4H6.

Explanation of Solution

Cycloalkenes are one of the types of unsaturated hydrocarbon.  Cycloalkenes contain double bond as the functional group.  General molecular formula of cycloalkene which contains one double bond is CnH2n-2.

Given hydrocarbon in the problem statement is said to have 4-carbon cycloalkene with one double bond.  Hence, “n” is 4.  Substituting it in the general molecular formula as shown below gives the molecular formula of cycloalkene,

    CnH2n-2C4H(2*4)-2C4H8-2C4H6

Therefore, the molecular formula of cycloalkene that contains four carbon atoms with a double bond is C4H6.

Conclusion

The molecular formula of the given cycloalkene is identified.

(d)

Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

(d)

Expert Solution
Check Mark

Answer to Problem 2.9EP

The molecular formula of the given cycloalkene is C4H4.

Explanation of Solution

Cycloalkenes are one of the types of unsaturated hydrocarbon.  Cycloalkenes contain double bond as the functional group.  General molecular formula of cycloalkene which contains two double bond is CnH2n-4.

Given hydrocarbon in the problem statement is said to have 4-carbon cycloalkene with two double bonds.  Hence, “n” is 4.  Substituting it in the general molecular formula as shown below gives the molecular formula of cycloalkene,

    CnH2n-4C4H(2*4)-4C4H8-4C4H4

Therefore, the molecular formula of cycloalkene that contains four carbon atoms with a double bond is C4H4.

Conclusion

The molecular formula of the given cycloalkene is identified.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a. The first three lines of this procedure describe the reaction used to make compound 5b. In the fourth line, hexane and sodium bicarbonate are added. What organic lab technique is being used here?  b. What is the purpose of the Na2SO4?  c. What equipment would you use to “concentrate [a solution] under reduced pressure”?
When N,N-dimethylaniline is treated with bromine both the ortho and para products are observed. However when treated with a mixture of nitric acid and sulfuric acid only the meta product is observed. Explain these results and support your answer with the appropriate drawings *Hint amines are bases* N HNO3 H2SO4 N NO2 N Br2 N Br + N 8-8-8 FeBr3 Br
Draw a mechanism that explains the formation of compound OMe SO3H 1. Fuming H2SO4

Chapter 2 Solutions

Organic And Biological Chemistry

Ch. 2.3 - Prob. 4QQCh. 2.4 - Prob. 1QQCh. 2.4 - Prob. 2QQCh. 2.5 - Prob. 1QQCh. 2.5 - Prob. 2QQCh. 2.5 - Prob. 3QQCh. 2.6 - Prob. 1QQCh. 2.6 - Prob. 2QQCh. 2.6 - Prob. 3QQCh. 2.7 - Prob. 1QQCh. 2.7 - Prob. 2QQCh. 2.7 - Prob. 3QQCh. 2.8 - Prob. 1QQCh. 2.8 - Prob. 2QQCh. 2.9 - Prob. 1QQCh. 2.9 - Prob. 2QQCh. 2.10 - Prob. 1QQCh. 2.10 - Prob. 2QQCh. 2.10 - Prob. 3QQCh. 2.10 - Prob. 4QQCh. 2.10 - Prob. 5QQCh. 2.11 - Prob. 1QQCh. 2.11 - Prob. 2QQCh. 2.11 - Prob. 3QQCh. 2.11 - Prob. 4QQCh. 2.11 - Prob. 5QQCh. 2.12 - Prob. 1QQCh. 2.12 - Prob. 2QQCh. 2.12 - Prob. 3QQCh. 2.12 - Prob. 4QQCh. 2.12 - Prob. 5QQCh. 2.13 - Prob. 1QQCh. 2.13 - Prob. 2QQCh. 2.13 - Prob. 3QQCh. 2.14 - Prob. 1QQCh. 2.14 - Prob. 2QQCh. 2.14 - Prob. 3QQCh. 2.14 - Prob. 4QQCh. 2.15 - Prob. 1QQCh. 2.15 - Prob. 2QQCh. 2.15 - Prob. 3QQCh. 2.15 - Prob. 4QQCh. 2.16 - Prob. 1QQCh. 2.16 - Prob. 2QQCh. 2 - Classify each of the following hydrocarbons as...Ch. 2 - Prob. 2.2EPCh. 2 - Prob. 2.3EPCh. 2 - Prob. 2.4EPCh. 2 - Prob. 2.5EPCh. 2 - Prob. 2.6EPCh. 2 - Prob. 2.7EPCh. 2 - Characterize the physical properties of saturated...Ch. 2 - Prob. 2.9EPCh. 2 - Prob. 2.10EPCh. 2 - Prob. 2.11EPCh. 2 - Prob. 2.12EPCh. 2 - Prob. 2.13EPCh. 2 - Prob. 2.14EPCh. 2 - What is the name of the spatial arrangement for...Ch. 2 - Prob. 2.16EPCh. 2 - Prob. 2.17EPCh. 2 - Prob. 2.18EPCh. 2 - Draw a condensed structural formula for each of...Ch. 2 - Prob. 2.20EPCh. 2 - The following names are incorrect by IUPAC rules....Ch. 2 - The following names are incorrect by IUPAC rules....Ch. 2 - Prob. 2.23EPCh. 2 - Draw a condensed structural formula for each of...Ch. 2 - Prob. 2.25EPCh. 2 - Classify each of the following compounds as...Ch. 2 - Prob. 2.27EPCh. 2 - How many hydrogen atoms are present in a molecule...Ch. 2 - Draw a line-angle structural formula for each of...Ch. 2 - Draw a line-angle structural formula for each of...Ch. 2 - Prob. 2.31EPCh. 2 - Prob. 2.32EPCh. 2 - Prob. 2.33EPCh. 2 - Prob. 2.34EPCh. 2 - Prob. 2.35EPCh. 2 - Prob. 2.36EPCh. 2 - Prob. 2.37EPCh. 2 - Prob. 2.38EPCh. 2 - For each of the following pairs of alkenes,...Ch. 2 - For each of the following pairs of alkenes,...Ch. 2 - Prob. 2.41EPCh. 2 - Prob. 2.42EPCh. 2 - Prob. 2.43EPCh. 2 - Prob. 2.44EPCh. 2 - Prob. 2.45EPCh. 2 - Prob. 2.46EPCh. 2 - For each molecule, indicate whether cistrans...Ch. 2 - Prob. 2.48EPCh. 2 - Prob. 2.49EPCh. 2 - Prob. 2.50EPCh. 2 - Draw a structural formula for each of the...Ch. 2 - Prob. 2.52EPCh. 2 - Prob. 2.53EPCh. 2 - For each of the following molecules, indicate...Ch. 2 - Prob. 2.55EPCh. 2 - Prob. 2.56EPCh. 2 - Prob. 2.57EPCh. 2 - Prob. 2.58EPCh. 2 - Prob. 2.59EPCh. 2 - How many isoprene units are present in a....Ch. 2 - Prob. 2.61EPCh. 2 - Indicate whether each of the following statements...Ch. 2 - Prob. 2.63EPCh. 2 - Prob. 2.64EPCh. 2 - Prob. 2.65EPCh. 2 - Prob. 2.66EPCh. 2 - Prob. 2.67EPCh. 2 - Prob. 2.68EPCh. 2 - Prob. 2.69EPCh. 2 - Prob. 2.70EPCh. 2 - Prob. 2.71EPCh. 2 - Prob. 2.72EPCh. 2 - Prob. 2.73EPCh. 2 - Prob. 2.74EPCh. 2 - Prob. 2.75EPCh. 2 - Prob. 2.76EPCh. 2 - Supply the structural formula of the product in...Ch. 2 - Prob. 2.78EPCh. 2 - Prob. 2.79EPCh. 2 - What reactant would you use to prepare each of the...Ch. 2 - Prob. 2.81EPCh. 2 - Prob. 2.82EPCh. 2 - Prob. 2.83EPCh. 2 - Prob. 2.84EPCh. 2 - Prob. 2.85EPCh. 2 - Prob. 2.86EPCh. 2 - Prob. 2.87EPCh. 2 - Prob. 2.88EPCh. 2 - Prob. 2.89EPCh. 2 - Prob. 2.90EPCh. 2 - Prob. 2.91EPCh. 2 - Prob. 2.92EPCh. 2 - Prob. 2.93EPCh. 2 - Prob. 2.94EPCh. 2 - Prob. 2.95EPCh. 2 - Prob. 2.96EPCh. 2 - Prob. 2.97EPCh. 2 - Prob. 2.98EPCh. 2 - Prob. 2.99EPCh. 2 - Prob. 2.100EPCh. 2 - Prob. 2.101EPCh. 2 - Prob. 2.102EPCh. 2 - Prob. 2.103EPCh. 2 - Prob. 2.104EPCh. 2 - Prob. 2.105EPCh. 2 - Prob. 2.106EPCh. 2 - Prob. 2.107EPCh. 2 - Prob. 2.108EPCh. 2 - Assign each of the compounds in Problem 13-107 an...Ch. 2 - Assign each of the compounds in Problem 13-108 an...Ch. 2 - Prob. 2.111EPCh. 2 - Prob. 2.112EPCh. 2 - Prob. 2.113EPCh. 2 - Prob. 2.114EPCh. 2 - Prob. 2.115EPCh. 2 - Prob. 2.116EPCh. 2 - Prob. 2.117EPCh. 2 - Prob. 2.118EPCh. 2 - Prob. 2.119EPCh. 2 - Prob. 2.120EPCh. 2 - Prob. 2.121EPCh. 2 - Prob. 2.122EPCh. 2 - Prob. 2.123EPCh. 2 - Prob. 2.124EPCh. 2 - Prob. 2.125EPCh. 2 - Prob. 2.126EPCh. 2 - Prob. 2.127EPCh. 2 - Prob. 2.128EPCh. 2 - Prob. 2.129EPCh. 2 - Prob. 2.130EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License