A blue car of length 4.52 m is moving north on a roadway (hat intersects another perpendicular roadway (Fig. P2.81, page 58). The width of the intersection from near edge to far edge is 28.0 m. The blue car has a constant acceleration of magnitude 2.10 m/s 2 directed south. The time interval required for the nose of the blue car to move from the near (south) edge of the intersection to the north edge of the intersection is 3.10 s. (a) How far is the nose of the blue car from the south edge of the intersection when it stops? (b) For what time interval is any part of the blue car within the boundaries of the intersection? (c) A red car is at rest on the perpendicular intersecting roadway. As the nose of the blue car enters the intersection, the red car starts from rest and accelerates east at 5.60 m/s 2 . What is the minimum distance from the near (west) edge of the intersection at which the nose of the red car can begin its motion if it is to enter the intersection alter the blue car has entirely left the intersection? (d) II the red car begins its motion at the position given by the answer to pan (c), with what speed does it enter the intersection?
A blue car of length 4.52 m is moving north on a roadway (hat intersects another perpendicular roadway (Fig. P2.81, page 58). The width of the intersection from near edge to far edge is 28.0 m. The blue car has a constant acceleration of magnitude 2.10 m/s 2 directed south. The time interval required for the nose of the blue car to move from the near (south) edge of the intersection to the north edge of the intersection is 3.10 s. (a) How far is the nose of the blue car from the south edge of the intersection when it stops? (b) For what time interval is any part of the blue car within the boundaries of the intersection? (c) A red car is at rest on the perpendicular intersecting roadway. As the nose of the blue car enters the intersection, the red car starts from rest and accelerates east at 5.60 m/s 2 . What is the minimum distance from the near (west) edge of the intersection at which the nose of the red car can begin its motion if it is to enter the intersection alter the blue car has entirely left the intersection? (d) II the red car begins its motion at the position given by the answer to pan (c), with what speed does it enter the intersection?
A blue car of length 4.52 m is moving north on a roadway (hat intersects another perpendicular roadway (Fig. P2.81, page 58). The width of the intersection from near edge to far edge is 28.0 m. The blue car has a constant acceleration of magnitude 2.10 m/s2 directed south. The time interval required for the nose of the blue car to move from the near (south) edge of the intersection to the north edge of the intersection is 3.10 s. (a) How far is the nose of the blue car from the south edge of the intersection when it stops? (b) For what time interval is any part of the blue car within the boundaries of the intersection? (c) A red car is at rest on the perpendicular intersecting roadway. As the nose of the blue car enters the intersection, the red car starts from rest and accelerates east at 5.60 m/s2. What is the minimum distance from the near (west) edge of the intersection at which the nose of the red car can begin its motion if it is to enter the intersection alter the blue car has entirely left the intersection? (d) II the red car begins its motion at the position given by the answer to pan (c), with what speed does it enter the intersection?
No chatgpt pls will upvote Already got wrong chatgpt answer
No chatgpt pls will upvote
Taking a Hike
A hiker begins a trip by first walking 21.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 46.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
y (km)
Can
N
W-DE
45.0°
60.0°
Tent
Tower
B
x (km)
☹
(a) Determine the components of the hiker's displacement for each day.
SOLUTION
Conceptualize We conceptualize the problem by drawing a sketch as in the figure. If we denote the displacement vectors on the first and second days by A and B, respectively, and use the ---Select-- as the origin of coordinates, we obtain the vectors shown in the figure. The sketch allows us to estimate the resultant vector as shown.
Categorize Drawing the resultant R, we can now categorize this problem as one we've solved before: --Select-- of two vectors. You should now have a hint of the power of categorization in that many new problems are very similar to problems we have already solved if we are…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.