Concept explainers
(a)
To classify:
(a)
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
- The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Si” symbol. This is Silicon. It is a metalloid.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Zn” symbol. This is Zinc. It is a metal.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “B” symbol. This is Boron. It is a metalloid.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “N” symbol. This is Nitrogen. It is a nonmetal.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “K” symbol. This is Potassium. It is a metal.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “S” symbol. This is Sulfur. It is a nonmetal.
In order to select if this is a metal, nonmetal or metalloid, one must identify the element and find it in the periodic table.
Want to see more full solutions like this?
Chapter 2 Solutions
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with Quick Prep and Student Solutions Manual 24-Months Printed Access Card
- Differentiate between single links and multicenter links.arrow_forwardI need help on my practice final, if you could explain how to solve this that would be extremely helpful for my final thursday. Please dumb it down chemistry is not my strong suit. If you could offer strategies as well to make my life easier that would be beneficialarrow_forwardNonearrow_forward
- Definition and classification of boranes.arrow_forwardWhich of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning