Concept explainers
(a)
Interpretation:
True and false
Meaning of “energy is quantized” that only certain energy values are allowed.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on it own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
Electrons might be promoted only to the higher energy orbitals of certain fixed energy values; the value in between are not allowed. Thus, the given statement is True.
(b)
Interpretation:
True and false
According to Bohr energy of an electron in an atom is quantized.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
The electron in an atom don’t move freely in the space around the nucleus. The electrons move in certain fixed orbitals which have certain energy levels. Thus, the energy of the electrons in an atom is quantized. Therefore, the provided statement is True.
(c)
Interpretation:
True and false
Electrons present in the atoms are confined to regions of space known as “principle energy levels”.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
Though there is significantly large space outside the nucleus, the electrons are confined to particular regions around the nucleus. These regions are called the “principle energy levels” or shells. Therefore, the provided statement is True.
(d)
Interpretation:
True and false
Each principal energy level might hold the maximum of two electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
False.
Explanation of Solution
Each principal energy level or shell contains of varying number of subshells s, p, d, f. Thus, the number of electrons in each principal energy level also varies. The subshells (s) might hold a maximum of the two electrons, while the subshells p, d, f might hold the maximum 8, 18 and 32 electrons respectively. Therefore, the provided statement is False.
(e)
Interpretation:
True and false
An electron in a 1s orbital is held closer to the nucleus than an electron in a 2s orbitals.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
The 1s orbital lies in the first principal energy level, whereas the 2s orbital lies in the second principal energy level. The initial principal energy level is nearer to the nucleus as compared to the second. Therefore, the electron in the 1s orbital is nearer to the nucleus than that in the 2s orbital. Therefore, the provided statement is True.
(f)
Interpretation:
True and false
An electron in a 2s orbital is harder to remove from an atom than an electron in a 2s orbital.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
False.
Explanation of Solution
The electron in the 1s orbital is closer to the nucleus than the electron in the 2s orbital. So, the nuclear attraction on the electrons in the 1s orbital is greater than on those in the 2s orbital. Therefore, a higher energy is needed to remove the inner 1s electron compared to the 2s electron. So, the electron in 1s orbital is harder to remove from an atom than an electron in a 2s orbital. Therefore, the provided statement is False.
(g)
Interpretation:
True and false
An s orbital has the shape of a sphere, with the nucleus at the center of the sphere.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
The shapes of the orbitals represent the electron density that is the probability of finding the electrons. For an s orbital, the electron density is spherical around the nucleus. Therefore, the provided statement is True.
(h)
Interpretation:
True and false
Each 2p orbital has the shape of a dumbbell, with the nucleus at the midpoint of the dumbbell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
For a 2p orbital the electron density is a dumbbell shaped, with the nucleus at the midpoint of the dumbbell. Therefore, the provided statement is True.
(i)
Interpretation:
True and false
The three 2p orbitals in an atom are aligned parallel to each other.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
False.
Explanation of Solution
Each 2p orbital has the shape of the dumbbell, and the three 2p orbitals 2px, 2py, 2pz are at the right angles to each other with each orbital on x, y, z axis. Therefore, the provided statement is False.
(j)
Interpretation:
True and false
An orbital is a region of space that can hold two electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
In an atom, shells are divided into subshells, and within these subshells, electrons are grouped in orbitals with each orbital holding a maximum of two electrons. Therefore, the provided statement is True.
(k)
Interpretation:
True and false
The second shell contains one ‘s’ orbital and three ‘p’ orbitals.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
The second shell can hold a maximum of eight electrons. These electrons can occupy the 2s and 2p orbitals. The 2s orbital is a single s orbital and holds two electrons. The 2p orbitals in sets of three and hold six electrons. Thus, the second shell one s orbital and three p orbitals. Therefore, the provided statement is True.
(l)
Interpretation:
True and false
In the ground-state electron configuration of an atom, only the lowest-energy orbitals are occupied.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
The electron configuration of an atom provides description of the orbitals in which the electrons are occupied. In the ground-state electron configuration, electrons occupy the orbital the orbital of lower energy first. All other orbitals of higher energy are empty. Therefore, the provided statement is True.
(m)
Interpretation:
True and false
A spinning electron behaves as a tiny bar magnet, with a North Pole and South Pole.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
A spinning electron produces a tiny magnetic field, aligning itself in the north-south direction. Thus, a spinning electron is considered as a tiny bar magnet, with a North Pole and a South Pole.
Therefore, the provided statement is True.
(n)
Interpretation:
True and false
An orbital can hold a maximum of two electrons with their spins paired.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
An orbital can hold a maximum of two electrons. When magnetic field of two electrons are aligned in opposite directions, the electrons are said to be spin-paired.
Therefore, the provided statement is True.
(o)
Interpretation:
True and false
Paired electrons spins mean that the two electrons are aligned with their spins North Pole to North Pole and South Pole to South Pole.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
False.
Explanation of Solution
When magnetic fields of two electrons are aligned in opposite directions, the electrons are said to be spin-paired. Paired electron spins mean that the two electrons are aligned with their spins, North Pole to South Pole and South Pole to North Pole.
Therefore, the provided statement is False.
(p)
Interpretation:
True and false
An orbital box diagram puts all of the electrons of an atom in one box with their spins aligned.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
False.
Explanation of Solution
The orbital box diagrams are used to represent the electrons. In this diagram, each box represents an orbital, so each box will hold a maximum of two electrons. An unpaired electron is represented by an arrow with its head up, whereas two electrons with paired spins are represented by a pair of arrows with heads in opposite directions. So the orbital box diagram doesn’t fill all of the electrons an atom in one box with their spins aligned.
Therefore, the provided statement is False.
(q)
Interpretation:
True and false
An orbital box diagram of a carbon atom shows two unpaired electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
A neutral carbon atom has six electrons. Two electrons are placed in the 1s orbital and two electrons are placed in the 2s orbital. The electrons in 1s an 2s orbitals are paired. The remaining two electrons are placed each in 2px, 2py orbitals.
Therefore, the provided statement is True.
(r)
Interpretation:
True and false
A Lewis dot structure shows only the electrons in the valence shell of an atom of the element.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
When writing a Lewis dot structure for an atom, the
Therefore, the provided statement is True.
(s)
Interpretation:
True and false
A characteristic of Group 1A elements is that each has one unpaired electron in its outermost occupied (valence) shell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
True.
Explanation of Solution
The group number provided the number of valence electrons in the outer shell of an atom. As the elements in Group 1A have only one valance electrons, it is always unpaired.
Therefore, the provided statement is True.
(t)
Interpretation:
True and false
A characteristic of Group 6A elements is that each has six unpaired electrons in its outermost occupied (valence) shell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.
Answer to Problem 2.49P
False.
Explanation of Solution
The group number gives the number of valence electrons in the outer shell of an atom, and not the number of unpaired electrons. Group 6A elements have six valence electrons. Out of the six valence electrons, two electrons occupy the 2s orbital. The remaining four electrons occupy the 2p orbital such that two electrons are paired in a 2px orbital, whereas two unpaired electrons remain in 2py and 2pz.
Therefore, the provided statement is False.
Want to see more full solutions like this?
Chapter 2 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- Please correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forward
- Five chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward
- 13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forward
- Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning