Two balanced three-phase loads that are connected in parallel are fed by a three-phase line having a series impedance of ( 0.4 − j 2.7 ) Ω per phase. One of the loads absorbs 560 kVA at 0.707 power factor lagging, and the other 132 kW at unity power factor. The line-to-line voltage at the load end of the line is 220 3 V . Compute (a) the line-to-line voltage at the source end of the line. (b) the total real and reactive power losses in the three-phase line, and (c) the total three-phase real and reactive power supplied at the sending end of the line. Check that the total three-phase complex power delivered by the source equals the total three-phase comp lex power absorbed by the line and loads.
Two balanced three-phase loads that are connected in parallel are fed by a three-phase line having a series impedance of ( 0.4 − j 2.7 ) Ω per phase. One of the loads absorbs 560 kVA at 0.707 power factor lagging, and the other 132 kW at unity power factor. The line-to-line voltage at the load end of the line is 220 3 V . Compute (a) the line-to-line voltage at the source end of the line. (b) the total real and reactive power losses in the three-phase line, and (c) the total three-phase real and reactive power supplied at the sending end of the line. Check that the total three-phase complex power delivered by the source equals the total three-phase comp lex power absorbed by the line and loads.
Solution Summary: The author explains the line-line voltage at the source end and the expression for the per phase current.
Two balanced three-phase loads that are connected in parallel are fed by a three-phase line having a series impedance of
(
0.4
−
j
2.7
)
Ω
per phase. One of the loads absorbs 560 kVA at 0.707 power factor lagging, and the other 132 kW at unity power factor. The line-to-line voltage at the load end of the line is
220
3
V
. Compute (a) the line-to-line voltage at the source end of the line. (b) the total real and reactive power losses in the three-phase line, and (c) the total three-phase real and reactive power supplied at the sending end of the line. Check that the total three-phase complex power delivered by the source equals the total three-phase comp lex power absorbed by the line and loads.
HW_#1
HW_01.pdf EE 213-01
Assignments
P Pearson MyLab and Mastering
uah.instructure.com
P Course Home
Watch out for units (i.e, kQ, mA, etc), show all units on answers and
clearly mark all answers
1)(5 pts) Specify if the following elements are absorbing or delivering power, and determine the
amount of power being absorbed or delivered.
10 V +
a)
5A
+
5 V
-
b)
2A
+ 10 V
-2A
2)(5 pts) Two circuits, shown by boxes A and B are connected as shown below. Use the
current reference direction provided and the voltage reference polarity shown to determine
the power for the interconnection. Also state the direction of power flow for the
connection: form A to B or B to A.
A
I
+
I
a) I = -6 A
V = -20 Volts
b) 1 = 8 A
V = 30 Volts
c) = 4 A
V = -80 Volts
d) I = -5 A
V = 40 Volts
B
3) (5 pts) Use Ohm's Law, KCL and KVL to determine values for V1, V2, V₁, I₁, and I2.
200 Ohms
A,
+
12
+
V1 75 Ohms
3 Amps
+
V2
300 Ohms
25 Ohms
4) (5 pts) For the circuit in Problem 2, determine the power (expressed as a…
Find the power delivered across the 10 ohm resistor
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Types of Energy for Kids - Renewable and Non-Renewable Energies; Author: Smile and Learn - English;https://www.youtube.com/watch?v=w16-Uems2Qo;License: Standard Youtube License