
Concept explainers
(a)
Interpretation:
Whether
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,
(b)
Interpretation:
Whether
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,
(c)
Interpretation:
Whether
Concept introduction:
Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.
The general representation for an atom is given as
The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.
The formula to calculate the number of neutrons is,

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
ALEKS 360 for Silberberg Chemistry: The Molecular Nature of Matter and Change
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





