Loose Leaf for Chemistry: The Molecular Nature of Matter and Change
Loose Leaf for Chemistry: The Molecular Nature of Matter and Change
8th Edition
ISBN: 9781260151749
Author: Silberberg Dr., Martin; Amateis Professor, Patricia
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2.41P

(a)

Interpretation Introduction

Interpretation:

Whether 816O and 817O have the same number of protons, electrons or neutrons is to be determined.

Concept introduction:

Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.

The general representation for an atom is given as ZAX. Here, A is a mass number and Z is the atomic number of an atom.

The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.

The formula to calculate the number of neutrons is,

Total number of neutrons(N)=[Mass number(A)Total number of protons(Z)] (1)

(a)

Expert Solution
Check Mark

Answer to Problem 2.41P

816O and 817O have equal numbers of protons and electrons. The number of neutrons is different in both. The given pair of isotopes have the same Z value.

Explanation of Solution

In atoms, the number of protons and electrons is the same since atom is a neutral species. Hence, there are 8 protons and 8 electrons in 816O and 817O each.

The formula for calculating the number of neutrons in 816O is,

Total number of neutrons=Mass numberTotal number of protons (1)

Substitute 16 for the mass number and 8 for the total number of protons in equation (1) to calculate the number of neutrons in 816O .

Total number of neutrons=168=8

Substitute 17 for the mass number and 8 for the total number of protons in equation (1) to calculate the number of neutrons in 817O .

Total number of neutrons=178=9

The number of neutrons in 816O is 8 and the number of neutrons in 817O is 9.

The atomic number of isotopes 816O and 817O are the same. Hence 816O and 817O have the same Z value.

Conclusion

The number of protons and electrons in 816O and 817O are the same whereas the number of neutrons is different. Hence 816O and 817O have the same Z value.

(b)

Interpretation Introduction

Interpretation:

Whether 1840Ar and 1941K have the same number of protons, electrons or neutrons is to be determined.

Concept introduction:

Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.

The general representation for an atom is given as ZAX. Here, A is a mass number and Z is the atomic number of an atom.

The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.

The formula to calculate the number of neutrons is,

Total number of neutrons(N)=[Mass number(A)Total number of protons(Z)] (1)

(b)

Expert Solution
Check Mark

Answer to Problem 2.41P

1840Ar and 1941K have different numbers of protons and electrons. The number of neutrons is the same. The pair have the same N value.

Explanation of Solution

In an atom, the number of protons and electrons is the same since atom is a neutral species. Hence, there are 18 protons and 18 electrons in 1840Ar.

Substitute 40 for the mass number and 18 for the total number of protons in equation (1) to calculate the number of neutrons in 1840Ar.

Total number of neutrons=4018=22

In an atom, the number of protons and electrons is the same since atom is a neutral species. Hence, there are 19 protons and electrons in 1941K.

Substitute 41 for the mass number and 19 for the total number of protons in equation (1) to calculate the number of neutrons in 1941K.

Total number of neutrons=4119=22

The number of neutrons in 1840Ar and 1941K is 22 for each.

The number of neutrons in 1840Ar and 1941K are the same. Hence 1840Ar and 1941K have the same N value.

Conclusion

1840Ar and 1941K have different numbers of protons and electrons. The number of neutrons is the same. Hence 1840Ar and 1941K have the same N value.

(c)

Interpretation Introduction

Interpretation:

Whether 2760Co and 2860Ni have the same number of protons, electrons or neutrons is to be determined.

Concept introduction:

Atoms are neutral in nature. They consist of even smaller particles namely, protons, electrons, and neutrons. Protons have a positive charge on them. Electrons have a negative charge. Neutrons have no charge in them. Protons and neutrons make up the nucleus in the atoms whereas the electrons revolve around the nucleus.

The general representation for an atom is given as ZAX. Here, A is a mass number and Z is the atomic number of an atom.

The superscript in the formula of elements or atoms is the mass number. The mass number is the sum of protons and neutrons in the atom. The subscript in the formula represents the atomic number. The atomic number of an element or atom is the number of protons in that element or atom. The difference between the mass number and the number of protons gives the number of neutrons.

The formula to calculate the number of neutrons is,

Total number of neutrons(N)=[Mass number(A)Total number of protons(Z)] (1)

(c)

Expert Solution
Check Mark

Answer to Problem 2.41P

The numbers of protons, neutrons, and electrons are different in 2760Co and 2860Ni. The given pair has the same A value.

Explanation of Solution

In an atom, the number of protons and electrons is the same since atom is a neutral species. Hence, there are 27 protons and 27 electrons in 2760Co.

Substitute 60 for the mass number and 27 for the total number of protons in equation (5) to calculate the number of neutrons in 2760Co.

Total number of neutrons=6027=33

In an atom, the number of protons and electrons is the same since atom is a neutral species. Hence, there are 28 protons and 28 electrons in 2860Ni.

Substitute 60 for the mass number and 28 for the total number of protons in equation (6) to calculate the number of neutrons in 2860Ni.

Total number of neutrons=6028=32

The numbers of neutrons in 2760Co and 2860Ni are 33 and 32 respectively.

The mass number 2760Co and 2860Ni are the same. Hence 2760Co and 2860Ni have the same A value.

Conclusion

The number of protons, electrons, and neutrons are different in 2760Co and 2860Ni. The mass number is the same in both elements. Hence they have the same A value.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 2 Solutions

Loose Leaf for Chemistry: The Molecular Nature of Matter and Change

Ch. 2.5 - Prob. B2.1PCh. 2.5 - Prob. B2.2PCh. 2.6 - Prob. 2.6AFPCh. 2.6 - Prob. 2.6BFPCh. 2.7 - Prob. 2.7AFPCh. 2.7 - Prob. 2.7BFPCh. 2.8 - Prob. 2.8AFPCh. 2.8 - Prob. 2.8BFPCh. 2.8 - Prob. 2.9AFPCh. 2.8 - Prob. 2.9BFPCh. 2.8 - Prob. 2.10AFPCh. 2.8 - Prob. 2.10BFPCh. 2.8 - Prob. 2.11AFPCh. 2.8 - Prob. 2.11BFPCh. 2.8 - Prob. 2.12AFPCh. 2.8 - Prob. 2.12BFPCh. 2.8 - Prob. 2.13AFPCh. 2.8 - Prob. 2.13BFPCh. 2.8 - Prob. 2.14AFPCh. 2.8 - Prob. 2.14BFPCh. 2.8 - Prob. 2.15AFPCh. 2.8 - Prob. 2.15BFPCh. 2.8 - Prob. 2.16AFPCh. 2.8 - Prob. 2.16BFPCh. 2.8 - Determine the name, formula, and molecular (or...Ch. 2.8 - Prob. 2.17BFPCh. 2.9 - Prob. B2.3PCh. 2 - Prob. 2.1PCh. 2 - List two differences between a compound and a...Ch. 2 - Which of the following are pure substances?...Ch. 2 - Classify each substance in Problem 2.3 as an...Ch. 2 - Explain the following statement: The smallest...Ch. 2 - Prob. 2.6PCh. 2 - Can the relative amounts of the components of a...Ch. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - In our modern view of matter and energy, is the...Ch. 2 - Prob. 2.14PCh. 2 - Which of the following scenes illustrate(s) the...Ch. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Fluorite, a mineral of calcium, is a compound of...Ch. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Dolomite is a carbonate of magnesium and calcium....Ch. 2 - Prob. 2.29PCh. 2 - Which of Dalton’s postulates about atoms are...Ch. 2 - Use Dalton’s theory to explain why potassium...Ch. 2 - Prob. 2.32PCh. 2 - The following charges on individual oil droplets...Ch. 2 - Prob. 2.34PCh. 2 - When Rutherford’s coworkers bombarded gold foil...Ch. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Write the notation for each atomic depiction: Ch. 2 - Write the notation for each atomic depiction: Ch. 2 - Draw atomic depictions similar to those in Problem...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Chlorine has two naturally occurring isotopes,...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - What monatomic ions would you expect radium (Z =...Ch. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - The radii of the sodium and potassium ions are 102...Ch. 2 - Prob. 2.77PCh. 2 - What information about the relative numbers of...Ch. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Give the systematic names for the formulas or the...Ch. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - Prob. 2.105PCh. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - Prob. 2.108PCh. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - Prob. 2.111PCh. 2 - Prob. 2.112PCh. 2 - What is the difference between a homogeneous and a...Ch. 2 - Prob. 2.114PCh. 2 - Prob. 2.115PCh. 2 - Prob. 2.116PCh. 2 - Which separation method is operating in each of...Ch. 2 - Prob. 2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Ammonium dihydrogen phosphate, formed from the...Ch. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. 2.127PCh. 2 - Prob. 2.128PCh. 2 - The following scenes represent a mixture of two...Ch. 2 - Prob. 2.130PCh. 2 - Prob. 2.131PCh. 2 - Prob. 2.132PCh. 2 - Prob. 2.133PCh. 2 - Prob. 2.134PCh. 2 - Prob. 2.135PCh. 2 - Prob. 2.136PCh. 2 - Prob. 2.137PCh. 2 - Prob. 2.138PCh. 2 - Prob. 2.139PCh. 2 - Prob. 2.140PCh. 2 - Prob. 2.141PCh. 2 - Prob. 2.142PCh. 2 - Prob. 2.143PCh. 2 - Prob. 2.144P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY