A glider of length 12.4 cm moves on an air track with constant acceleration (Fig P2.19). A time interval of 0.628 s elapses between the moment when its front end passes a fixed point Ⓐ along the track and the moment when its back end passes this point. Next, a time interval of 1.39 s elapses between the moment when the back end of the glider passes the point Ⓐ and the moment when the front end of the glider passes a second point Ⓑ farther down the track. After that, an additional 0.431 s elapses until the back end of the glider passes point Ⓑ. (a) Find the average speed of the glider as it passes point Ⓐ. (b) Find the acceleration of the glider. (c) Explain how you can compute the acceleration without knowing the distance between points Ⓐ and Ⓑ.
A glider of length 12.4 cm moves on an air track with constant acceleration (Fig P2.19). A time interval of 0.628 s elapses between the moment when its front end passes a fixed point Ⓐ along the track and the moment when its back end passes this point. Next, a time interval of 1.39 s elapses between the moment when the back end of the glider passes the point Ⓐ and the moment when the front end of the glider passes a second point Ⓑ farther down the track. After that, an additional 0.431 s elapses until the back end of the glider passes point Ⓑ. (a) Find the average speed of the glider as it passes point Ⓐ. (b) Find the acceleration of the glider. (c) Explain how you can compute the acceleration without knowing the distance between points Ⓐ and Ⓑ.
A glider of length 12.4 cm moves on an air track with constant acceleration (Fig P2.19). A time interval of 0.628 s elapses between the moment when its front end passes a fixed point Ⓐ along the track and the moment when its back end passes this point. Next, a time interval of 1.39 s elapses between the moment when the back end of the glider passes the point Ⓐ and the moment when the front end of the glider passes a second point Ⓑ farther down the track. After that, an additional 0.431 s elapses until the back end of the glider passes point Ⓑ. (a) Find the average speed of the glider as it passes point Ⓐ. (b) Find the acceleration of the glider. (c) Explain how you can compute the acceleration without knowing the distance between points Ⓐ and Ⓑ.
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.