EBK FIRST COURSE IN PROBABILITY, A
10th Edition
ISBN: 9780134753676
Author: Ross
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.3TE
Prove the following relations: 3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1. A group of five applicants for a pair of identical jobs consists of three men and two
women. The employer is to select two of the five applicants for the jobs. Let S
denote the set of all possible outcomes for the employer's selection. Let A denote
the subset of outcomes corresponding to the selection of two men and B the subset
corresponding to the selection of at least one woman. List the outcomes in A, B,
AUB, AN B, and An B. (Denote the different men and women by M₁, M2, M3
and W₁, W2, respectively.)
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
4. (i) Let a discrete sample space be given by
N = {W1, W2, W3, W4},
and let a probability measure P on be given by
P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1.
Consider the random variables X1, X2 → R defined by
X₁(w1) = 1, X₁(w2) = 2,
X2(w1) = 2, X2 (w2) = 2,
Find the joint distribution of X1, X2.
(ii)
X1(W3) = 1, X₁(w4) = 1,
X2(W3) = 1, X2(w4) = 2.
[4 Marks]
Let Y, Z be random variables on a probability space (, F, P).
Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the
joint distribution of Y, Z on [0, 1] x [0,2] be given by
1
dPy,z (y, z) ==(y²z+yz2) dy dz.
harks 12 Find the distribution Py of the random variable Y.
[8 Marks]
Chapter 2 Solutions
EBK FIRST COURSE IN PROBABILITY, A
Ch. 2 - A box contains 3 marbles: 1 red, 1 green, and 1...Ch. 2 - In an experiment, die is rolled continually until...Ch. 2 - Two dice are thrown. Let E be the event that the...Ch. 2 - A, B, and C take turns flipping a coin. The first...Ch. 2 - A system is composed of 5 components, each of...Ch. 2 - A hospital administrator codes incoming patients...Ch. 2 - Consider an experiment that consists of...Ch. 2 - Suppose that A and B are mutually exclusive events...Ch. 2 - A retail establishment accepts either the American...Ch. 2 - Sixty percent of the students at a certain school...
Ch. 2 - A total of 28 percent of American males smoke...Ch. 2 - An elementary school is offering 3 language...Ch. 2 - A certain town with a population of 100.000 has 3...Ch. 2 - The following data were given in a study of a...Ch. 2 - If it is assumed that all (525) poker hands are...Ch. 2 - Poker dice is played by simultaneously rolling 5...Ch. 2 - Twenty five people, consisting of 15 women and 10...Ch. 2 - Two cards are randomly selected from an ordinary...Ch. 2 - Two symmetric dice have had two of their sides...Ch. 2 - Suppose that you are playing blackjack against a...Ch. 2 - A small community organization consists of 20...Ch. 2 - Consider the following technique for shuffling a...Ch. 2 - A pair of fair dice is rolled. What is the...Ch. 2 - It two dice are rolled, what is the probability...Ch. 2 - A pair of dice is rolled until a sum of either 5...Ch. 2 - The game of craps is played as follows: A player...Ch. 2 - An urn contains 3 red and 7 black balls. Players A...Ch. 2 - An urn contains 5 red, 6 blue, and 8 green balls....Ch. 2 - An urn contains n white and m black balls, where n...Ch. 2 - The chess clubs of two schools consist of,...Ch. 2 - A 3-person basketball team consists of a guard, a...Ch. 2 - A group of individuals containing b boys and g...Ch. 2 - A forest contains 20 elk, of which 5 are captured,...Ch. 2 - The second Earl of Yarborough is reported to have...Ch. 2 - Seven balls are randomly withdrawn from an urn...Ch. 2 - Two cards are chosen at random from a deck of 52...Ch. 2 - An instructor gives her class a set of 10 problems...Ch. 2 - There are n socks. 3 of which are red, in a...Ch. 2 - There are 5 hotels in a certain town. If 3 people...Ch. 2 - If 4 balls are randomly chosen from an urn...Ch. 2 - If a die is rolled 4 times, what is the...Ch. 2 - Two dice are thrown n times in succession. Compute...Ch. 2 - a. If N people, including A and B, are randomly...Ch. 2 - Five people, designated as A, B, C, D, E, are...Ch. 2 - A woman has n keys, of which one will open her...Ch. 2 - How many people have to be in a room in order that...Ch. 2 - Suppose that 5 of the numbers 1, 2,..., 14 are...Ch. 2 - Given 20 people, what is the probability that...Ch. 2 - A group of 6 men and 6 women is randomly divided...Ch. 2 - In a hand of bridge, find the probability that you...Ch. 2 - Suppose that n balls are randomly distributed into...Ch. 2 - A closet contains 10 pairs of shoes. If 8 shoes...Ch. 2 - If 8 people, consisting of 4 couples, are randomly...Ch. 2 - Compute the probability that a bridge hand is void...Ch. 2 - Compute the probability that a hand of 13 cards...Ch. 2 - Two players play the following game: Player A...Ch. 2 - Prove the following relations: EFEEFCh. 2 - Prove the following relations: If EF, then FCEC.Ch. 2 - Prove the following relations: 3. F=FEFEC and...Ch. 2 - Prove the following relations: (1Ei)F=1EiF and...Ch. 2 - For any sequence of events E1,E2,..., define a new...Ch. 2 - Let E, F, and C be three events. Find expressions...Ch. 2 - Use Venn diagrams a. to simplify the expression...Ch. 2 - Prob. 2.8TECh. 2 - Suppose that an experiment is performed n times...Ch. 2 - Prove...Ch. 2 - If P(E)=.9 and P(F)=.8, show that P(EF).7. In...Ch. 2 - Show that the probability that exactly one of the...Ch. 2 - Prove that P(EF)=P(E)P(EF).Ch. 2 - Prove Proposition 4.4 by mathematical induction.Ch. 2 - An urn contains M white and N black balls. If a...Ch. 2 - Use induction to generalize Bonferronis inequality...Ch. 2 - Consider the matching problem. Example 5m, and...Ch. 2 - Let fn, denote the number of ways of tossing a...Ch. 2 - An urn contains n red and m blue balls. They are...Ch. 2 - Consider an experiment whose sample space consists...Ch. 2 - Consider Example 50, which is concerned with the...Ch. 2 - A cafeteria offers a three-course meal consisting...Ch. 2 - A customer visiting the suit department of a...Ch. 2 - A deck of cards is dealt out. What is the...Ch. 2 - Let A denote the event that the midtown...Ch. 2 - An ordinary deck of 52 cards is shuffled. What is...Ch. 2 - Urn A contains 3 red and 3 black balls, whereas...Ch. 2 - In a state lottery, a player must choose 8 of the...Ch. 2 - From a group of 3 first-year students, 4...Ch. 2 - For a finite set A, let N(A) denote the number of...Ch. 2 - Consider an experiment that consists of 6 horses,...Ch. 2 - A 5-card hand is dealt from a well-shuffled deck...Ch. 2 - A basketball team consists of 6 frontcourt and 4...Ch. 2 - Suppose that a person chooses a letter at random...Ch. 2 - Prove Booles inequality P(i=1Ai)i=1P(Ai)Ch. 2 - Show that if P(Ai)=1 for all i1, then P(i=1Ai)=1.Ch. 2 - Let Tk(n) denote the number of partitions of the...Ch. 2 - Five balls are randomly chosen, without...Ch. 2 - Four red, 8 blue, and 5 green balls are randomly...Ch. 2 - Ten cards are randomly chosen from a deck of 52...Ch. 2 - Balls are randomly removed from an urn initially...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- marks 11 3 3/4 x 1/4 1. There are 4 balls in an urn, of which 3 balls are white and 1 ball is black. You do the following: draw a ball from the urn at random, note its colour, do not return the ball to the urn; draw a second ball, note its colour, return the ball to the urn; finally draw a third ball and note its colour. (i) Describe the corresponding discrete probability space (Q, F, P). [9 Marks] (ii) Consider the following event, A: Among the first and the third balls, one ball is white, the other is black. Write down A as a subset of the sample space and find its probability, P(A). [2 Marks]arrow_forwardThere are 4 balls in an urn, of which 3 balls are white and 1 ball isblack. You do the following:• draw a ball from the urn at random, note its colour, do not return theball to the urn;• draw a second ball, note its colour, return the ball to the urn;• finally draw a third ball and note its colour.(i) Describe the corresponding discrete probability space(Ω, F, P). [9 Marks](ii) Consider the following event,A: Among the first and the third balls, one ball is white, the other is black.Write down A as a subset of the sample space Ω and find its probability, P(A)arrow_forwardLet (Ω, F, P) be a probability space and let X : Ω → R be a randomvariable whose probability density function is given by f(x) = 12 |x|e−|x| forx ∈ R.(i) Find the characteristic function of the random variable X.[8 Marks](ii) Using the result of (i), calculate the first two moments of therandom variable X, i.e., E(Xn) for n = 1, 2. [6 Marks]Total marks 16 (iii) What is the variance of X?arrow_forward
- ball is drawn from one of three urns depending on the outcomeof a roll of a dice. If the dice shows a 1, a ball is drawn from Urn I, whichcontains 2 black balls and 3 white balls. If the dice shows a 2 or 3, a ballis drawn from Urn II, which contains 1 black ball and 3 white balls. Ifthe dice shows a 4, 5, or 6, a ball is drawn from Urn III, which contains1 black ball and 2 white balls. (i) What is the probability to draw a black ball? [7 Marks]Hint. Use the partition rule.(ii) Assume that a black ball is drawn. What is the probabilitythat it came from Urn I? [4 Marks]Total marks 11 Hint. Use Bayes’ rulearrow_forwardLet X be a random variable taking values in (0,∞) with proba-bility density functionfX(u) = 5e^−5u, u > 0.Let Y = X2 Total marks 8 . Find the probability density function of Y .arrow_forwardLet P be the standard normal distribution, i.e., P is the proba-bility measure on R, B(R) given bydP(x) = 1√2πe− x2/2dx.Consider the random variablesfn(x) = (1 + x2) 1/ne^(x^2/n+2) x ∈ R, n ∈ N.Using the dominated convergence theorem, prove that the limitlimn→∞E(fn)exists and find itarrow_forward
- 13) Consider the checkerboard arrangement shown below. Assume that the red checker can move diagonally upward, one square at a time, on the white squares. It may not enter a square if occupied by another checker, but may jump over it. How many routes are there for the red checker to the top of the board?arrow_forward12) The prime factors of 1365 are 3, 5, 7 and 13. Determine the total number of divisors of 1365.arrow_forward11) What is the sum of numbers in row #8 of Pascal's Triangle?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
What are the Different Types of Triangles? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=1k0G-Y41jRA;License: Standard YouTube License, CC-BY
Law of Sines AAS, ASA, SSA Ambiguous Case; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=FPVGb-yWj3s;License: Standard YouTube License, CC-BY
Introduction to Statistics..What are they? And, How Do I Know Which One to Choose?; Author: The Doctoral Journey;https://www.youtube.com/watch?v=HpyRybBEDQ0;License: Standard YouTube License, CC-BY
Triangles | Mathematics Grade 5 | Periwinkle; Author: Periwinkle;https://www.youtube.com/watch?v=zneP1Q7IjgQ;License: Standard YouTube License, CC-BY
What Are Descriptive Statistics And Inferential Statistics?; Author: Amour Learning;https://www.youtube.com/watch?v=MUyUaouisZE;License: Standard Youtube License