Fundamentals Of Engineering Thermodynamics, 9th Edition Epub Reg Card Loose-leaf Print Companion Set
9th Edition
ISBN: 9781119456285
Author: Michael J. Moran
Publisher: Wiley (WileyPLUS Products)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.36P
To determine
Calculate the thickness of the brick wall and the rate of conduction of the wall surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A composite plane wall consists of a 3-in.-thick layer of insulation (k = 0.029 Btu/h · ft · °R) and a 0.75-in.-thick layer of siding (k =
0.058 Btu/h · ft · °R). The inner temperature of the insulation is 67°F. The outer temperature of the siding is 0°F. Determine at steady
state (a) the temperature at the interface of the two layers, in °F, and (b) the rate of heat transfer through the wall in Btu/h-ft2 of
surface area.
A composite plane wall consists of a 5-in.-thick layer of insulation (ks = 0.029 Btu/h ft. "R) and a 0.75-in.-thick layer of siding (ks =
0.058 Btu/h-ft- ºR). The inner temperature of the insulation is 67°F. The outer temperature of the siding is 0°F. Determine at steady
state (a) the temperature at the interface of the two layers, in °F, and (b) the rate of heat transfer through the wall in Btu/h-ft² of
surface area.
In an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 13.8 oC. The temperature at the inside surface of the wall is 18.4 oC. The wall is 0.13 m thick and has an area of 6.8 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?
Chapter 2 Solutions
Fundamentals Of Engineering Thermodynamics, 9th Edition Epub Reg Card Loose-leaf Print Companion Set
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A composite plane wall consists of a 3-in.-thick layer of insulation (k = 0.029 Btu/h · ft · °R) and a 0.75-in.-thick layer of siding (kg = 0.058 Btu/h · ft · °R). The inner temperature of the insulation is 67°F. The outer temperature of the siding is 8°F. Determine at steady state (a) the temperature at the interface of the two layers, in °F, and (b) the rate of heat transfer through the wall in Btu/h-ft? of surface area.arrow_forwardA composite plane wall consists of a 4-in-thick layer of insulation (ks = 0.029 Btu/h-ft-°R) and a 0.75-in-thick layer of siding (ks = 0.058 Btu/h.ft.R). The inner temperature of the insulation is 67°F. The outer temperature of the siding is 8°F. Determine at steady state (a) the temperature at the interface of the two layers, in °F, and (b) the rate of heat transfer through the wall in Btu/h-ft² of surface area.arrow_forwardmake it short and simplearrow_forward
- 3. A lumped system with a volume of 0.003 m³ and a surface area of 0.08 m² is made of a material with density of 3800 kg/m³, thermal conductivity of 300 W/m K, and specific heat of 200 J/kg K. If the system is exposed to a convection environment with h = 60 W/m2 K, what is the approximate time it will take for this system to reach equilibrium with the environment? Express your answer in minutes.arrow_forwardA composite plane wall consists of a 3-in.-thick layer of insulation (ks = 0.029 Btu/h ft. °R) and a 0.75-in.-thick layer of siding (ks = 0.058 Btu/h ft. °R). The inner temperature of the insulation is 67°F. The outer temperature of the siding is 8°F. Determine at steady state (a) the temperature at the interface of the two layers, in °F, and (b) the rate of heat transfer through the wall in Btu/h-ft² of surface area. Part A Determine at steady state the temperature at the interface of the two layers, in °F. T₂ i °Farrow_forwardThermodynamics: Can you show me how to solve for the answer that is written below? Please show it in step by step solution Thank you!arrow_forward
- The nodal diagram shown is of a section of a flat plate with thermal conductivity of 51 W/m K. The left side and top side are exposed to the same convection environment at 35°C and 46.3 W/m² K. The divisions used have Ax = Ay = 11 cm. At steady state, the temperature at 1 is T₁ = 51.1°C, at 3 is T3 = 85.0°C, at 5 is T5 = 114.3°C, at 7 is T7 = 121.4°C, and 8 is Tg = 130.4°C. What is the temperature at 4, T4? Express your answer in °C. Too h 8 3 7 Ax = Ay Too h S 8arrow_forward2 (a) The inner and outer surfaces of a 5m x 10m brick wall of thickness 30 cm and thermal conductivity 0.69 W/m·K are maintained at temperatures of 20°C and 5°C, respectively. (i) Determine the rate of heat transfer through the wall, in W. [Note: State all assumptions] (ii) Explain the effect of thermal conductivity in rate of heat transferarrow_forward4arrow_forward
- A food product with 85% moisture content is being frozen. Estimate the specific heat of the product at -10°C when 80% of the water is in a frozen state. The specific heat of dry product solid is 2 kJ/(kg °C). Assume specific heat of water at -10°C is similar to specific heat of water at 0°C. And the heat of the types of ice follow the function of Cp ice = 0.0062 Tfrozen + 2.0649. Cp frozen product = ... kJ/kg °C.arrow_forward6. a. The heat flux applied to the walls of the biomass combustion furnace is 20 W/m2. The furnace walls have a thickness of 10 mm and a thermal conductivity of 12 W/m.K. If the wall surface temperature is measured to be 50oC on the left and 30oC on the right, prove that conduction heat transfer occurs at a steady state!b. Heating the iron cylinder on the bottom side is done by placing the iron on the hotplate. This iron has a length of 20 cm. The surface temperature of the hotplate is set at 300oC while the top side of the iron is in contact with the still outside air. To reach the desired hotplate temperature, it takes 5 minutes. Then it takes 15 minutes to measure the temperature of the upper side of the iron cylinder at 300oC. Show 3 proofs that heat transfer occurs transientlyarrow_forwardPravinbhaiarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License