
Concept explainers
(a)
Interpretation:
The electron geometry, molecular geometry, and bond angle about the charged atom in the given molecule is to be identified.
Concept introduction:
The VSEPR chart depicts the electron and molecular geometry on the basis of numbers of electron groups. The Electron geometry about an atom describes the orientation of a group of electrons around it. A lone pair of electrons, a single bond, a double bond, a triple bond each is considered as one group of electrons. Molecular geometry describes the arrangement of surrounding atoms about a particular atom. Molecular geometry is governed by electron geometry of an atom. If all the electron groups around an atom are bonds, then the molecular geometry will be the same as electron geometry. The electron and molecular geometry about a particular atom will be different when one or more of the electron group is lone pair. The bond angle is the angle between two bonds originating from the same atom in a covalent molecule or ion. The bond angle depends on the molecular geometry around the atom.

Answer to Problem 2.34P
The electron and molecular geometry about the charged atom in the given molecular ion is trigonal planar and the bond angle is
Explanation of Solution
The given molecular ion is:
In this molecular ion, the charged atom is nitrogen. Nitrogen has two single bonds and one double bond thus, there are three electron groups around the nitrogen atom. According to the VSEPR chart, the electron geometry about nitrogen is trigonal planar and as there are no lone pairs around it, the molecular geometry is also trigonal planar. The bond angle in the orientation of three electron groups is
The electron geometry, molecular geometry and the bond angle about charged atom in the given molecule is predicted on the basis of VSEPR chart.
(b)
Interpretation:
The electron geometry, molecular geometry, and bond angle about the charged atom in the given molecule is to be identified.
Concept introduction:
The VSEPR chart depicts the electron and molecular geometry on the basis of numbers of electron groups. The Electron geometry about an atom describes the orientation of a group of electrons around it. A lone pair of electrons, a single bond, a double bond, a triple bond each is considered as one group of electrons. Molecular geometry describes the arrangement of surrounding atoms about a particular atom. Molecular geometry is governed by electron geometry of an atom. If all the electron groups around an atom are bonds, then the molecular geometry will be the same as electron geometry. The electron and molecular geometry about a particular atom will be different when one or more of the electron group is lone pair. The bond angle is the angle between two bonds originating from the same atom in a covalent molecule or ion. The bond angle depends on the molecular geometry around the atom.

Answer to Problem 2.34P
The electron geometry about the charged atom in the given molecular ion is trigonal planar, molecular geometry is bent and the bond angle is
Explanation of Solution
The given molecular ion is:
In this molecular ion, the charged atom is carbon; the negative charge indicates the lone pairs of electrons. The charged carbon atom has one single bond and one double bond and one lone pair thus there are three electron groups around this charged carbon atom. According to the VSEPR chart, the molecular geometry is bent, since there are two bonds around the charged carbon atom. And the electron geometry about charged carbon is trigonal planar as there is one lone pairs of electrons along with two bonds. The bond angle in the orientation of three electron groups is
The electron geometry, molecular geometry and the bond angle about charged atom in the given molecule is predicted on the basis of VSEPR chart.
(c)
Interpretation:
The electron geometry, molecular geometry, and bond angle about the charged atom in the given molecule is to be identified.
Concept introduction:
The VSEPR chart depicts the electron and molecular geometry on the basis of numbers of electron groups. The Electron geometry about an atom describes the orientation of a group of electrons around it. A lone pair of electrons, a single bond, a double bond, a triple bond each is considered as one group of electrons. Molecular geometry describes the arrangement of surrounding atoms about a particular atom. Molecular geometry is governed by electron geometry of an atom. If all the electron groups around an atom are bonds, then the molecular geometry will be the same as electron geometry. The electron and molecular geometry about a particular atom will be different when one or more of the electron group is lone pair. The bond angle is the angle between two bonds originating from the same atom in a covalent molecule or ion. The bond angle depends on the molecular geometry around the atom.

Answer to Problem 2.34P
The electron geometry about the charged atom in the given molecular ion is trigonal planar, molecular geometry is bent and the bond angle is
Explanation of Solution
The given molecular ion is:
In this molecular ion, the charged atom is nitrogen; the negative charge indicates the lone pairs of electrons. The charged nitrogen atom has two single bonds and one lone pair of electrons, thus there are three electron groups. According to the VSEPR chart, the electron geometry about charged nitrogen should be trigonal planar and as there is one lone pair around it, the molecular geometry is bent. The bond angle in the orientation of three electron groups is
The electron geometry, molecular geometry, and the bond angle about charged atom in the given molecule is predicted on the basis of VSEPR chart.
(d)
Interpretation:
It is to be identified the electron geometry, molecular geometry, and bond angle about the charged atom in the given molecule.
Concept introduction:
The VSEPR chart depicts the electron and molecular geometry on the basis of numbers of electron groups. The Electron geometry about an atom describes the orientation of a group of electrons around it. A lone pair of electrons, a single bond, a double bond, a triple bond each is considered as one group of electrons. Molecular geometry describes the arrangement of surrounding atoms about a particular atom. Molecular geometry is governed by electron geometry of an atom. If all the electron groups around an atom are bonds, then the molecular geometry will be the same as electron geometry. The electron and molecular geometry about a particular atom will be different when one or more of the electron group is lone pair. The bond angle is the angle between two bonds originating from the same atom in a covalent molecule or ion. The bond angle depends on the molecular geometry around the atom.

Answer to Problem 2.34P
The electron and molecular geometry about the charged atom in the given molecular ion is tetrahedral and the bond angle is
Explanation of Solution
The given molecular ion is:
In this molecular ion, the charged atom is nitrogen. The charged nitrogen atom has four single bonds and no lone pair thus there are four electron groups. According to the VSEPR chart the electron geometry about charged nitrogen should be tetrahedral and as there is no lone pair around it, the molecular geometry as same as the electron geometry, that is tetrahedral. The bond angle in the orientation of four electron groups is
The electron geometry, molecular geometry and the bond angle about charged atom in the given molecule is predicted on the basis of VSEPR chart.
(e)
Interpretation:
It is to be identified the electron geometry, molecular geometry, and bond angle about the charged atom in the given molecule.
Concept introduction:
The VSEPR chart depicts the electron and molecular geometry on the basis of numbers of electron groups. The Electron geometry about an atom describes the orientation of a group of electrons around it. A lone pair of electrons, a single bond, a double bond, a triple bond each is considered as one group of electrons. Molecular geometry describes the arrangement of surrounding atoms about a particular atom. Molecular geometry is governed by electron geometry of an atom. If all the electron groups around an atom are bonds, then the molecular geometry will be the same as electron geometry. The electron and molecular geometry about a particular atom will be different when one or more of the electron group is lone pair. The bond angle is the angle between two bonds originating from the same atom in a covalent molecule or ion. The bond angle depends on the molecular geometry around the atom.

Answer to Problem 2.34P
The electron and molecular geometry about the charged atom in the given molecular ion is trigonal planar and the bond angle is
Explanation of Solution
The given molecular ion is:
In this molecular ion, the charged atom is carbon. The carbon atom bearing the positive charge has three bonds, two with carbons and one with hydrogen. This carbon has an incomplete octet and thus it has no lone pairs of electrons on it. Thus there are three electron groups around this carbon atom. According to the VSEPR chart, the electron geometry about charged carbon is trigonal planar and as there is no lone pair around it, the molecular geometry is also trigonal planar. The bond angle in the orientation of four electron groups is
The electron geometry, molecular geometry and the bond angle about charged atom in the given molecule is predicted on the basis of VSEPR chart.
(f)
Interpretation:
The electron geometry, molecular geometry, and bond angle about the charged atom in the given molecule is to be identified.
Concept introduction:
The VSEPR chart depicts the electron and molecular geometry on the basis of numbers of electron groups. The Electron geometry about an atom describes the orientation of a group of electrons around it. A lone pair of electrons, a single bond, a double bond, a triple bond each is considered as one group of electrons. Molecular geometry describes the arrangement of surrounding atoms about a particular atom. Molecular geometry is governed by electron geometry of an atom. If all the electron groups around an atom are bonds, then the molecular geometry will be the same as electron geometry. The electron and molecular geometry about a particular atom will be different when one or more of the electron group is lone pair. The bond angle is the angle between two bonds originating from the same atom in a covalent molecule or ion. The bond angle depends on the molecular geometry around the atom.

Answer to Problem 2.34P
The electron and molecular geometry about the charged atom in the given molecular ion is linear and the bond angle is
Explanation of Solution
The given molecular ion is:
In this molecular ion, the charged atom is oxygen. The charged oxygen atom has one triple bond and one lone pair thus there are two electron groups. According to the VSEPR chart, the two electron group tends to have linear electron and molecular geometry. The bond angle in the orientation of tow electron groups is
The electron geometry, molecular geometry and the bond angle about charged atom in the given molecule is predicted on the basis of VSEPR chart.
Want to see more full solutions like this?
Chapter 2 Solutions
EBK ORGANIC CHEMISTRY: PRINCIPLES AND M
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forwardShow the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forward
- Draw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forwardDraw stepwise mechanismarrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: a) Give the major reason for the exposure of benzophenone al isopropyl alcohol (w/acid) to direct sunlight of pina colone Mechanism For b) Pinacol (2,3-dimethy 1, 1-3-butanediol) on treatment w/ acid gives a mixture (3,3-dimethyl-2-butanone) and 2, 3-dimethyl-1,3-butadiene. Give reasonable the formation of the productsarrow_forwardwhat are the Iupac names for each structurearrow_forwardWhat are the IUPAC Names of all the compounds in the picture?arrow_forward
- 1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following compounds. Please show your work. (8) SF2, CH,OH, C₂H₂ b) Based on your answers given above, list the compounds in order of their Boiling Point from low to high. (8)arrow_forward19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+arrow_forwardLi+ is a hard acid. With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiClarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER




