
Industrial Plastics: Theory and Applications
6th Edition
ISBN: 9781285061238
Author: Lokensgard, Erik
Publisher: Delmar Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.2Q
Interpretation Introduction
Interpretation:
The pyrolysis process should be explained.
Concept introduction:
Pyrolysis is a word generated from the Greek language in which pyro means 'fire' and the lysis is interpreted as separating anything.
Hence, the pyrolysis combines the phenomena where any matter is broken or separated with the application of heat or fire.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
chemical engineering.
The answer for H(3) is minus 1.26 KJ/mol. Demonstrate the reference state to the process state for nitrogen gas. I know that is an ideal gas law for the nitrogen gas. I know how to calculate the heat capacity for this.
Q. VI: An equimolar liquid mixture of benzene and toluene is separated into two product streams
by distillation. At each point in the column some of the liquid vaporizes and some of the vapor
stream condenses. The vapor leaving the top of the column, which contains 97 mole% benzene,
is completely condensed and split into two equal fractions: one is taken off as the overhead
product stream, and the other (the reflux) is recycled to the top of the column. The overhead
product stream contains 89.2% of the benzene fed to the column. The liquid leaving the bottom
of the column is fed to a partial reboiler in which 45% of it is vaporized. The vapor generated in
the reboiler (the boilup) is recycled to become the rising vapor stream in the column, and the
residual reboiler liquid is taken off as the bottom product stream. The compositions of the streams
leaving the reboiler are governed by the relation,
YB/(1 - YB)
XB/(1 - XB)
= 2.25
where YB and XB are the mole fractions of benzene in the…
Q. IV: Aqueous solutions of the amino-acid L-isoleucine (Ile) are prepared by putting 100.0 grams
of pure water into each of six flasks and adding different precisely weighed quantities of lle to
each flask. The densities of the solutions at 50.0±0.05°C are then measured with a precision
densitometer, with the following results.
r (g lle/100 g H2O) 0.000
p (g solution/cm³)
0.8821
0.98803 0.98984
1.7683
0.99148
2.6412 3.4093
0.99297 0.99439
4.2064
0.99580
(a) Plot a calibration curve showing the mass ratio, r, as a function of solution density, p, and fit a
straight line to the data to obtain an equation of the form r = ap + b.
(b) The volumetric flow rate of an aqueous lle solution at a temperature of 50°C is 150 L/h. The
density of the sample of the stream is measured and found to be 0.9940 g/cm³. Use the calibration
equation to estimate the mass flow rate of lle in the stream (in kg lle/h).
(c) It has been later discovered that the thermocouple used to measure the stream temperature…
Chapter 2 Solutions
Industrial Plastics: Theory and Applications
Knowledge Booster
Similar questions
- chemical engineering. The answer is minus 1.26 KJ/mol for H(3). Demonstrate the reference state to the process state and calculations. I only need help for determing that variable.arrow_forwardExhaust gas from a power plant passes through a 15-by-20-it rectangular duct at an average velocity of 50 ft/s. The total length of duct is 250 ft and there are two 90° bends.The gas is at 180°F and about 1 atm, and the properties are similar to those of air. Calculate the pressure drop in the duet and the power required to overcome pressure losses.arrow_forwardUntuk sistem gas etilena (1)/propilena (2), estimasi (f^1, f^2, $^1, dan ^2 pada t = 150°C, P = 30 bar, dan y1 = 0,35; kij = 0. (a) Dengan menerapkan Persamaan (10.63). (b) Dengan asumsi bahwa campuran adalah lingkungan idealarrow_forward
- Only focus on H(3), which is the specific enthalpy for nitrogen gas. chemical engineeringarrow_forwardchemical engineering. Only focus on H(3), which is the nitrogen gas. Start with the reference state to the process state. Be thorough to the fullestarrow_forwardacetone with these parameters: po:=101325; #Standard atmospheric pressure in PaTfo:=273.15-94.45; #Melting temperature in K Tvo:=273.15+56.15; #Boiling temperature in K Hv:=31270; #Enthalpy of vaporization in J/molR:=8.314; #Gas Constant in J/mol*KNLe:=1.76; #Lewis number for acetoneMw:= 0.05808 ; #kg/mol molecular weight of acetoneW0:= 0.15; Wsp:=0.005;Am:= 0.12; #m^2/kg dry solid for the exposed wet areah:= 11; #W/m^2K for heat transfer coefficienttau__min:= Hv*(W0-Wsp)/Mw/Am/h/(T8-TS); tau__min/60;arrow_forward
- chemical engineering Material-energy balance. Only focus on the nitrogen gas, which is H(3)arrow_forward1. The settling chamber, shown schematically in Figure 2E1.1, is used as a primary separation device in the removal of dust particles of density 1500 kg/m³ from a gas of density 0:7 kg/m³ and viscosity 1.90 x 10-5 Pa s. Gas inlet Elevation Gas Gas exit exit H Collection surface -W Section X-X Dimensions: H=3m L = 10 m W=2m Figure 2E1.1 Schematic diagram of settling chamber Assuming Stokes' law applies, show that the efficiency of collection of particles of size x is given by the expression collection efficiency, x = x²8(pp - Pi)L 18μHU where U is the uniform gas velocity through the parallel-sided section of the chamber. State any other assumptions made. (b) What is the upper limit of particle size for which Stokes' law applies? (c) When the volumetric flow rate of gas is 0.9 m³/s, and the dimensions of the chamber are those shown in Figure 2E1.1, determine the collection efficiency for spherical particles of diameter 30 mm.arrow_forwardCan you answer this sequantially correct like show me the full process. Also, since it is chemical engineering related problem a perry's handbook is used. Thank youarrow_forward
- chemical engineering Demonstrate how each specific enthalpy was calculated, from the reference state to the process state. Be thorough to the fullest. This is a material-energy balance. The answers are H(1) = 35.7 KJ/kmol, H(2) = 32.0 KJ/kmol, and H(3) = -1.26 KJ/kmol.arrow_forwardheat and mass transfer:arrow_forwardChemical Engineering. Be thorough to the fullest for the three enthalpies. H(1) = 35.7 kj/kmol H(2) =32.0 Kj/kmol H(3)= -1.26 Kj/kmolarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The