Principles of Foundation Engineering, SI Edition
8th Edition
ISBN: 9781305723351
Author: Braja M. Das
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.23P
To determine
Calculate the major principal stress at failure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A clay specimen with drained shear strength parameters of c'=5 kPa and Φ=320 is consolidated under all around pressure of 140 kPa.The specimen was then loaded axially to failure under undrained condition and failed when the principal stress diffrences reached 60 kPa.Calculate the pore pressure(u) and the pore pressure coefficient D(=A*B=Δu/Δσv) of the clay.
A consolidated-drained triaxial test on a normally consolidated clay yielded a friction angle, Φ', of 28°. If the all-around confining pressure during the test was 140 kN/m2, what was the major principal stress at failure?
A consolidated-undrained test determines that the shear strength of a normally consolidated clay is given by τf = σ’tan 27o. The confining pressure is 150 kPa, and deviator stress at failure is 120 kPa.• Find the consolidated-undrained friction angle• Pore water pressure developed in the specimen at failureFinal answer should be in 3 decimal places.
Chapter 2 Solutions
Principles of Foundation Engineering, SI Edition
Ch. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10P
Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - For a normally consolidated soil, the following is...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A consolidated undrained triaxial test was performed on a normally consolidated clay with a critical state friction angle of 230. After an initial isotropic consolidation at a cell pressure of 50 kPa, drainage was turned off, the cell pressure was increased to 85 kPa, and the sample was loaded to ultimate conditions. A pore pressure of 55 kPa was measured at ultimate state. What value of major principal total stress was measured at the ultimate state?arrow_forwardIn an Oedometer apparatus, a specimen of fully saturated clay has been consolidated under a vertical pressure of 50 kN/m2 and is presently at equilibrium. The effective stress and pore water pressure immediately on increasing the vertical stress to 150 kN/m2, respectively are...?arrow_forwardx in red is equal to 39arrow_forward
- 5- The shear strength of a normally consolidated clay can be given by the equation tf o'tan 27°. Following are the results of a consolidated-undrained test on the clay. • Chamber-confining pressure = 3,130 lb/ft² Deviator stress at failure = 2,510 lb/ft² a) Determine the consolidated-undrained friction angle b) Pore-water pressure developed in the specimen at failurearrow_forwardPlease answer 12.17arrow_forward[Shear Strength,. speciments of a fully saturdated clay, the following results were obtained at failure. In a series of unconsolidated-undrained triaxial tests on Major Principal Stress Minor Principal Stress (kPa) 200 422 618 400 600 820 Calculate the following: a. Cohesion b. Angle of internal frictionarrow_forward
- The shear strength of a normally consolidated clay can be given by theequation (tau)f=(sigma prime)tan(21). The results of a consolidated-undrained test on theclay areChamber confining pressure 5 225 kN/m2Deviator stress at failure 5 112 kN/m2Determine:a. The consolidated-undrained (total stress) friction angleb. Pore water pressure developed in the specimen at failurearrow_forwardIn a triaxial test, a specimen of saturated [normally consolidated] clay was consolidated under a chamber confining pressure of 80 kPa. The axial stress on the specimen was then increased through the allowing the drainage from the specimen. The specimen fails when 120 kPa. The pore water pressure at the time was 50 kPa. What is the consolidated undrained friction angle [phi]?arrow_forwardA triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shear stress on the failure plane, at failure were determined to be 6100 psf and 4600 psf, respectively. a. Determine the angle of internal friction of the sand? b. Determine the angle of the failure plane? c. Determine the maximum principal stress? Please answer this asap. For upvote. Thank you very mucharrow_forward
- A sample of normally consolidated clay was subjected to a consolidated undrained triaxial compression test that was carried out until the specimen failed at a deviator stress of 50 kN/m2. The pore water pressure at failure was recorded to be 20 kN/m2 and confining pressure of 50 kN/m2 was used in the test. Determine the consolidated undrained friction angle.arrow_forwardA consolidated-undrained test on a normally consolidate clay yield the following results: Confining Pressure 167 KPa; Deviator Stress = 184 KPa; Pore Pressure = 74 KPa. Calculate the normal stress at the failure plane at drained condition in KPa.arrow_forward• In consolidated-drained triaxial test on a normally consolidated clay, the specimen failed at a deviator stress of 124 KN/sq.m. If the effective stress friction angle is known to be 31°, what was the effective confining pressure at failure?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning