
Concept explainers
SOC The table that follows reports the marital status of 20 respondents in two different apartment complexes. (HINT: As you solve these problems, make sure that you have the correct numbers in the numerator and the denominator. For example, problem 2.1a asks for “the percentage of respondents in each complex who are married,” and the denominators will be 20 for these two fractions. Problem 2.1d, on the other hand, asks for the “percentage of the single respondents who live in Complex B,” and the denominator for this fraction will be 4 + 6, or 10.)
Status | Complex A | Complex B |
Married | 5 | 10 |
Unmarried (“living together”) | 8 | 2 |
Single | 4 | 6 |
Separated | 2 | 1 |
Widowed | 0 | 1 |
Divorced | 1 | 0 |
20 | 20 |
a. What percentage of the respondents in each complex are married?
b. What is the ratio of single to married respondents at each complex?
c. What proportion of the residents of each complex are widowed?
d. What percentage of the single respondents lives in Complex B?
e. What is the ratio of the “unmarried/living together” to the “married” at each complex?

a)
To find:
The percentages of the respondents in each complex are married.
Answer to Problem 2.1P
Solution:
Complex A:
Complex B:
Explanation of Solution
Formula:
Percentage: % =
Where,
f = frequency, or the number of cases in a specific category.
N = the number of cases in all categories.
For complex A,
The frequency of married respondents is f = 5.
Total number of frequencies is N = 20.
Therefore the percentage of the respondents who are married at,
Complex A:
For complex B,
The frequency of married respondents is f = 10.
Total number of frequencies is N = 20.
Therefore the percentage of the respondents who are married at,
Complex B:

b)
To find:
The ratio of single to married respondents at each complex.
Answer to Problem 2.1P
Solution:
Complex A: 4:5 = 0.80
Complex: B: 6:10 = 0.60
Explanation of Solution
Ratios are computed by dividing the frequency in one category by the frequency in another one. The formula for a ratio is:
Ratio =
Where,
For Complex A,
Therefore, the ratio of single to married respondents at complex A is
For Complex B,
Therefore, the ratio of single to married respondents at complex B is

c)
To find:
The proportion of the residents of each complex who are widowed.
Answer to Problem 2.1P
Solution:
Complex A:
Complex B:
Explanation of Solution
Formula:
Proportion =
Where,
f = frequency, or the number of cases in a specific category.
N = the number of cases in all categories.
For Complex A,
f = the number of widows in Complex A, f = 0.
N = the number of cases in all categories, N = 20.
Therefore, the proportion of the residents of each complex who are widowed is
For Complex B,
f = the number of widows in Complex B, f = 1.
N = the number of cases in all categories, N = 20.
Therefore, the proportion of the residents of each complex who are widowed is

d)
To find:
The percentage of the single respondents living in Complex B.
Answer to Problem 2.1P
Solution:
Explanation of Solution
Formula:
Percentage: % =
Where,
f = frequency, or the number of cases in a specific category.
N = the number of cases in all categories.
For complex B,
The frequency of single respondents from Complex B is f = 6.
Total number of single respondents is N = 6 + 4 = 10.
Therefore the percentage of the single respondents living in Complex B is,

e)
To find:
The ratio of the “unmarried/living together” to the “married” at each complex.
Answer to Problem 2.1P
Solution:
Complex A: 8:5 = 1.60.
Complex: B: 2:10 = 0.20.
Explanation of Solution
Ratios are computed by dividing the frequency in one category by the frequency in another one. The formula for a ratio is:
Ratio =
Where,
For Complex A,
Therefore, the ratio of unmarried/living together to married respondents at complex A is:
For Complex B,
Therefore, the ratio of single to married respondents at complex B is
Want to see more full solutions like this?
Chapter 2 Solutions
Essentials Of Statistics
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Introductory Statistics
Elementary Algebra For College Students (10th Edition)
Elementary Statistics: Picturing the World (7th Edition)
APPLIED STAT.IN BUS.+ECONOMICS
- A study was undertaken to compare respiratory responses of hypnotized and unhypnotized subjects. The following data represent total ventilation measured in liters of air per minute per square meter of body area for two independent (and randomly chosen) samples. Analyze these data using the appropriate non-parametric hypothesis test. Unhypnotized: 5.0 5.3 5.3 5.4 5.9 6.2 6.6 6.7 Hypnotized: 5.8 5.9 6.2 6.6 6.7 6.1 7.3 7.4arrow_forwardThe class will include a data exercise where students will be introduced to publicly available data sources. Students will gain experience in manipulating data from the web and applying it to understanding the economic and demographic conditions of regions in the U.S. Regions and topics of focus will be determined (by the student with instructor approval) prior to April. What data exercise can I do to fulfill this requirement? Please explain.arrow_forwardConsider the ceocomp dataset of compensation information for the CEO’s of 100 U.S. companies. We wish to fit aregression model to assess the relationship between CEO compensation in thousands of dollars (includes salary andbonus, but not stock gains) and the following variates:AGE: The CEOs age, in yearsEDUCATN: The CEO’s education level (1 = no college degree; 2 = college/undergrad. degree; 3 = grad. degree)BACKGRD: Background type(1= banking/financial; 2 = sales/marketing; 3 = technical; 4 = legal; 5 = other)TENURE: Number of years employed by the firmEXPER: Number of years as the firm CEOSALES: Sales revenues, in millions of dollarsVAL: Market value of the CEO's stock, in natural logarithm unitsPCNTOWN: Percentage of firm's market value owned by the CEOPROF: Profits of the firm, before taxes, in millions of dollars1) Create a scatterplot matrix for this dataset. Briefly comment on the observed relationships between compensationand the other variates.Note that companies with negative…arrow_forward
- 6 (Model Selection, Estimation and Prediction of GARCH) Consider the daily returns rt of General Electric Company stock (ticker: "GE") from "2021-01-01" to "2024-03-31", comprising a total of 813 daily returns. Using the "fGarch" package of R, outputs of fitting three GARCH models to the returns are given at the end of this question. Model 1 ARCH (1) with standard normal innovations; Model 2 Model 3 GARCH (1, 1) with Student-t innovations; GARCH (2, 2) with Student-t innovations; Based on the outputs, answer the following questions. (a) What can be inferred from the Standardized Residual Tests conducted on Model 1? (b) Which model do you recommend for prediction between Model 2 and Model 3? Why? (c) Write down the fitted model for the model that you recommended in Part (b). (d) Using the model recommended in Part (b), predict the conditional volatility in the next trading day, specifically trading day 814.arrow_forward4 (MLE of ARCH) Suppose rt follows ARCH(2) with E(rt) = 0, rt = ut, ut = στει, σε where {+} is a sequence of independent and identically distributed (iid) standard normal random variables. With observations r₁,...,, write down the log-likelihood function for the model esti- mation.arrow_forward5 (Moments of GARCH) For the GARCH(2,2) model rt = 0.2+0.25u1+0.05u-2 +0.30% / -1 +0.20% -2, find cov(rt). 0.0035 ut, ut = στει,στ =arrow_forward
- Definition of null hypothesis from the textbook Definition of alternative hypothesis from the textbook Imagine this: you suspect your beloved Chicken McNugget is shrinking. Inflation is hitting everything else, so why not the humble nugget too, right? But your sibling thinks you’re just being dramatic—maybe you’re just extra hungry today. Determined to prove them wrong, you take matters (and nuggets) into your own hands. You march into McDonald’s, get two 20-piece boxes, and head home like a scientist on a mission. Now, before you start weighing each nugget like they’re precious gold nuggets, let’s talk hypotheses. The average weight of nuggets as mentioned on the box is 16 g each. Develop your null and alternative hypotheses separately. Next, you weigh each nugget with the precision of a jeweler and find they average out to 15.5 grams. You also conduct a statistical analysis, and the p-value turns out to be 0.01. Based on this information, answer the following questions. (Remember,…arrow_forwardBusiness Discussarrow_forwardCape Fear Community Colle X ALEKS ALEKS - Dorothy Smith - Sec X www-awu.aleks.com/alekscgi/x/Isl.exe/10_u-IgNslkr7j8P3jH-IQ1w4xc5zw7yX8A9Q43nt5P1XWJWARE... Section 7.1,7.2,7.3 HW 三 Question 21 of 28 (1 point) | Question Attempt: 5 of Unlimited The proportion of phones that have more than 47 apps is 0.8783 Part: 1 / 2 Part 2 of 2 (b) Find the 70th The 70th percentile of the number of apps. Round the answer to two decimal places. percentile of the number of apps is Try again Skip Part Recheck Save 2025 Mcarrow_forward
- Hi, I need to sort out where I went wrong. So, please us the data attached and run four separate regressions, each using the Recruiters rating as the dependent variable and GMAT, Accept Rate, Salary, and Enrollment, respectively, as a single independent variable. Interpret this equation. Round your answers to four decimal places, if necessary. If your answer is negative number, enter "minus" sign. Equation for GMAT: Ŷ = _______ + _______ GMAT Equation for Accept Rate: Ŷ = _______ + _______ Accept Rate Equation for Salary: Ŷ = _______ + _______ Salary Equation for Enrollment: Ŷ = _______ + _______ Enrollmentarrow_forwardQuestion 21 of 28 (1 point) | Question Attempt: 5 of Unlimited Dorothy ✔ ✓ 12 ✓ 13 ✓ 14 ✓ 15 ✓ 16 ✓ 17 ✓ 18 ✓ 19 ✓ 20 = 21 22 > How many apps? According to a website, the mean number of apps on a smartphone in the United States is 82. Assume the number of apps is normally distributed with mean 82 and standard deviation 30. Part 1 of 2 (a) What proportion of phones have more than 47 apps? Round the answer to four decimal places. The proportion of phones that have more than 47 apps is 0.8783 Part: 1/2 Try again kip Part ی E Recheck == == @ W D 80 F3 151 E R C レ Q FA 975 % T B F5 10 の 000 园 Save For Later Submit Assignment © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Y V& U H J N * 8 M I K O V F10 P = F11 F12 . darrow_forwardYou are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) 10 States using Systematic Sampling (4 points: 1 for random numbers generation; 1 for generating random sample different from the previous answer; 1 for correct K value calculation table; 1 for correct sample drawn by using systematic sampling) (For systematic sampling, do not use the original data directly. Instead, first randomize the data, and then use the randomized dataset to draw your sample. Furthermore, do not use the random list previously generated, instead, generate a new random sample for this part. For more details, please see the snapshot provided at the end.) You are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: o 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) o…arrow_forward
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill





