Principles Of Geotechnical Engineering, Si Edition
Principles Of Geotechnical Engineering, Si Edition
9th Edition
ISBN: 9781305970953
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.1CTP

Three groups of students from the Geotechnical Engineering class collected soil-aggregate samples for laboratory testing from a recycled aggregate processing plant in Palm Beach County, Florida. Three samples, denoted by Soil A, Soil B, and Soil C, were collected from three locations of the aggregate stockpile, and sieve analyses were conducted (see Figure 2.35).

Chapter 2, Problem 2.1CTP, Three groups of students from the Geotechnical Engineering class collected soil-aggregate samples , example  1

(a)

Chapter 2, Problem 2.1CTP, Three groups of students from the Geotechnical Engineering class collected soil-aggregate samples , example  2

(b)

Figure 2.35 (a) Soil-aggregate stockpile; (b) sieve analysis (Courtesy of Khaled Sobhan, Florida Atlantic University, Boca Raton, Florida)

a. Determine the coefficient of uniformity and the coefficient of gradation for Soils A, B, and C.

b. Which one is coarser: Soil A or Soil C? Justify your answer.

c. Although the soils are obtained from the same stockpile, why are the curves so different? (Hint: Comment on particle segregation and representative field sampling.)

d. Determine the percentages of gravel, sand and fines according to Unified Soil Classification System.

(a)

Expert Solution
Check Mark
To determine

Calculate the coefficient of uniformity (Cu) and coefficient of gradation (Cc) for soils A, B, and C.

Answer to Problem 2.1CTP

The uniformity coefficient of soil A is 26.42_.

The coefficient of gradation of soil A is 3.64_.

The uniformity coefficient of soil B is 35_.

The coefficient of gradation of soil B is 3.35_.

The uniformity coefficient of soil C is 46.67_.

The coefficient of gradation of soil C is 1.15_.

Explanation of Solution

Sketch the grain size distribution curve for soils A, B, and C as shown in Figure 1.

Principles Of Geotechnical Engineering, Si Edition, Chapter 2, Problem 2.1CTP

Refer to Figure 1.

For soil A:

The diameter of the particle corresponding to 60% finer (D60) is 14mm.

The diameter of the particle corresponding to 30% finer (D30) is 5.2mm.

The diameter of the particle corresponding to 10% finer (D10) is 0.53mm.

For soil B:

The diameter of the particle corresponding to 60% finer (D60) is 8.1mm.

The diameter of the particle corresponding to 30% finer (D30) is 2.5mm.

The diameter of the particle corresponding to 10% finer (D10) is 0.23mm.

For soil C:

The diameter of the particle corresponding to 60% finer (D60) is 7mm.

The diameter of the particle corresponding to 30% finer (D30) is 1.1mm.

The diameter of the particle corresponding to 10% finer (D10) is 0.15mm.

Calculate the uniformity coefficient (Cu) using the relation.

Cu=D60D10 (1)

For soil A:

Substitute 14mm for D60 and 0.53mm for D10 in Equation (1).

Cu=140.53=26.42

Hence, the uniformity coefficient for soil A is 26.42_.

For soil B:

Substitute 8.1mm for D60 and 0.23mm for D10 in Equation (1).

Cu=8.10.23=35

Hence, the uniformity coefficient for soil B is 35_.

For soil C:

Substitute 7mm for D60 and 0.15mm for D10 in Equation (1).

Cu=70.15=46.67

Hence, the uniformity coefficient for soil C is 46.67_.

Calculate the coefficient of gradation (Cc) using the relation.

Cc=D302D60×D10 (2)

For soil A:

Substitute 14mm for D60, 5.2mm for D30, and 0.53mm for D10 in Equation (2).

Cc=5.2214×0.53=27.045.512=3.64

Hence, the coefficient of gradation for soil A is 3.64_.

For soil B:

Substitute 8.1mm for D60, 2.5mm for D30, and 0.23mm for D10 in Equation (2).

Cc=2.528.1×0.23=6.251.863=3.35

Hence, the coefficient of gradation for soil B is 3.35_.

For soil C:

Substitute 7mm for D60, 1.1mm for D30, and 0.15mm for D10 in Equation (2).

Cc=1.127×0.15=1.211.05=1.15

Therefore, the coefficient of gradation for soil C is 1.15_.

(b)

Expert Solution
Check Mark
To determine

State which of the soil is coarser from soil A and C.

Answer to Problem 2.1CTP

Soil A is coarser than soil C.

Explanation of Solution

Refer to part (a).

The uniformity coefficient of soil A is 26.42.

The uniformity coefficient of soil C is 46.67.

The percent of soil finer than 1mm for soil A is 20%.

The percent of soil finer than 1mm for soil C is 47%.

Hence, a higher percentage of soil C is finer than soil A.

Hence, soil A is coarser than soil C.

(c)

Expert Solution
Check Mark
To determine

Explain the reason for curve different of soil A, B and C if it is obtained from same stockpile.

Explanation of Solution

The particle-size distribution curve shows the range of particle sizes present in a soil and the type of distribution of various-size particles.

Refer to Figure 1.

Particle separation of coarser and finer particles may take place in aggregate stockpiles. This makes representative sampling difficult.

Therefore, the particle-size distribution curve is different for soils A, B, and C.

(d)

Expert Solution
Check Mark
To determine

Calculate the percentages of gravel, sand, and fines according to the Unified Soil Classification System.

Answer to Problem 2.1CTP

The percentage of gravel for soil A is 71%_.

The percentage of sand for soil A is 28%_.

The percentage of fines for soil A is 1%_.

The percentage of gravel for soil B is 55%_.

The percentage of sand for soil B is 43%_.

The percentage of fines for soil B is 2%_.

The percentage of gravel for soil C is 47%_.

The percentage of sand for soil C is 50%_.

The percentage of fines for soil C is 3%_.

Explanation of Solution

Refer to Figure 1.

For soil A.

The percent passing through 4.75mm sieve is 29%.

The percent passing through 0.075mm sieve is 1%.

Calculate the percentage of gravel as shown below.

Percentofgravel=100percent passing through 4.75mmsieve=10029=71%

Hence, the percentage of gravel is 71%_.

Calculate the percentage of sand as shown below.

Percentofsand=(percent passing through 4.75mmsieve)(percent passing through 0.075mmsieve)=291=28%

Hence, the percentage of sand is 28%_.

Calculate the percentage of fines as shown below.

Percentoffines=percent passing through 0.075mmsieve0=10=1%

Hence, the percentage of fines is 1%_.

Refer to Figure 1.

For soil B.

The percent passing through 4.75mm sieve is 45%.

The percent passing through 0.075mm sieve is 2%.

Calculate the percentage of gravel as shown below.

Percentofgravel=100percent passing through 4.75mmsieve=10045=55%

Hence, the percentage of gravel is 55%_.

Calculate the percentage of sand as shown below.

Percentofsand=(percent passing through 4.75mmsieve)(percent passing through 0.075mmsieve)=452=43%

Hence, the percentage of sand is 43%_.

Calculate the percentage of fines as shown below.

Percentoffines=percent passing through 0.075mmsieve0=20=2%

Hence, the percentage of fines is 2%_.

Refer to Figure 1.

For soil C.

The percent passing through 4.75mm sieve is 53%.

The percent passing through 0.075mm sieve is 3%.

Calculate the percentage of gravel as shown below.

Percentofgravel=100percent passing through 4.75mmsieve=10053=47%

Hence, the percentage of gravel is 47%_.

Calculate the percentage of sand as shown below.

Percentofsand=(percent passing through 4.75mmsieve)(percent passing through 0.075mmsieve)=533=50%

Hence, the percentage of sand is 50%_.

Calculate the percentage of fines as shown below.

Percentoffines=percent passing through 0.075mmsieve0=30=3%

Hence, the percentage of fines is 3%_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3. Find the reinforcements for the mid span and supports for an interior 8 in. thick slab (S-2) in the floor from Problem 1. Ignore the beams and assume that the slab is supported by columns only. Sketch the slab and show the reinforcements including the shrinkage and temperature reinforcement steel. Use fc’ = 4,000 psi and fy = 60,000 psi.
Problem 4 (Apx Method) Determine (approximately) the force in each member of the truss. Assume the diagonals can support both tensile and compressive forces. 3 m 50 kN F 000 40 kN 000 000 000 000 000 000 E 000 000 000 000 000 B 3 m 20 kN D 000 000 000 000 C 3 m Problem 5 (Apx Method) Determine (approximately) the force in each member of the truss in problem 4. Assume the diagonals cannot support compressive forces.
The single degree of freedom (SDOF) system  the acceleration at the base (excitation) and the acceleration at the roof (response) of the SDOF system was recorded with sampling rate 50 Hz (50 samples per second, or dt= 0.02 seconds). The file ElCentro.txt includes the two columns of acceleration data. The first column lists the acceleration at the base of the SDOF system. The second column lists the acceleration at the roof of the SDOF system. (a) Plot the time histories of the recorded accelerations at the base and at the roof of the SDOF system. (b) Compute the acceleration, velocity and displacement time histories of the roof of the SDOF system subjected to the recorded base acceleration using the Central Difference method. Plot the accel- eration, velocity and displacement time histories. Plot the restoring force, the damping force, and the inertia force time histories. Compare the recorded acceleration time history at the roof of the SDOF with the acceleration that you computed…
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Aggregates: Properties; Author: nptelhrd;https://www.youtube.com/watch?v=49yGZYeokKM;License: Standard YouTube License, CC-BY