Concept explainers
(a)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1 Hz
R = 30000 Ω
C = 0.033 µF
(b)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 103 Hz
R = 30000 Ω
C = 0.033 µF
(c)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 106 Hz
R = 30000 Ω
C = 0.0033 µF
(d)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation;
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1Hz
R = 300 Ω
C = 0.0033 µF
(e)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 103 Hz
R = 300 Ω
C = 0.0033 µF
(f)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation;
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 106 Hz
R = 300 Ω
C = 0.0033 µF
(g)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation;
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1 Hz
R = 3000 Ω
C = 0.33 µF
(h)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 1000 Hz
R = 3000 Ω
C = 0.33 µF
(i)
Interpretation:
The capacitive reactance, the impedance and the phase angle
Concept introduction:
The capacitive reactance (Xc) is a property of a capacitor that is analogous to the resistance of a resistor.
C = capacitance
The impedance (Z) is given by following equation:
Xc = capacitive reactance
R = resistance
The phase angle (
Xc = capacitive reactance
R = resistance

Answer to Problem 2.18QAP
Explanation of Solution
Given information:
Frequency = 106 Hz
R = 3000 Ω
C = 0.33 µF
Want to see more full solutions like this?
Chapter 2 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- Problem 5-48 Assign R or S configurations to the chirality centers in ascorbic acid (vitamin C). OH H OH HO CH2OH Ascorbic acid O H Problem 5-49 Assign R or S stereochemistry to the chirality centers in the following Newman projections: H Cl H CH3 H3C. OH H3C (a) H H H3C (b) CH3 H Problem 5-52 Draw the meso form of each of the following molecules, and indicate the plane of symmetry in each: OH OH (a) CH3CHCH2CH2CHCH3 CH3 H3C. -OH (c) H3C CH3 (b) Problem 5-66 Assign R or S configurations to the chiral centers in cephalexin, trade-named Keflex, the most widely prescribed antibiotic in the United States. H2N H IHH S Cephalexin N. CH3 CO₂Harrow_forwardSteps and explanationn please.arrow_forwardSteps and explanationn please.arrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
