(a)
Interpretation:
Time constant for the circuit should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
(b)
Interpretation:
The current, voltage drops across the capacitor and the resistor during a charging cycle at given times should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Ohm’s law:
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
Connection between initial current and current across the capacitor (i) at given time during the charging is given by
The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this
Vc = Voltage across the capacitor
Vs= Supply voltage
t = time
RC = time constant for RC circuit
(c)
Interpretation:
The current and voltage drops across the capacitor and the resistor during a discharging cycle at time 10 ms should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Ohm’s law:
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this;
Vc = Voltage across the capacitor
Vs= Supply voltage
t = time
RC = time constant for RC circuit
Connection between initial current and current across the capacitor (i) at given time during the discharging is given by;
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardUse the vapor-liquid equilibrium data at 1.0 atm. for methanol-water (Table 2-8 ) for the following: If the methanol vapor mole fraction is 0.600, what is the methanol liquid mole fraction? Is there an azeotrope in the methanol-water system at a pressure of 1.0 atmospheres? If water liquid mole fraction is 0.350, what is the water vapor mole fraction? What are the K values of methanol and of water at a methanol mole fraction in the liquid of 0.200? What is the relative volatility αM-W at a methanol mole fraction in the liquid of 0.200?arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. || |II***** Molecule 1 | Molecule 4 none of the above Molecule 2 Molecule 3 Х mm... C ---||| *** Molecule 5 Molecule 6arrow_forward
- is SiBr4 Silicon (IV) tetra Bromine? is KClO2 potassium dihypochlorite ?arrow_forward"יוון HO" Br CI Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 Br Br Br HO OH H CI OH ✓ Molecule 4 Molecule 5 Molecule 6 CI Br יייון H Br OH OH CI Br ☐ none of the above × Garrow_forwardUS2 Would this be Uranium (II) diSulfide?arrow_forward
- nomenclature for PU(SO4)3arrow_forwardLi2CrO4 is this Lithium (II) Chromatearrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. NH ** Molecule 1 NH Molecule 4 none of the above Х Molecule 3 Molecule 2 H N wwwwww.. HN Molecule 5 Molecule 6 HN R mw... N H ☐arrow_forward
- Nomenclature P4S3 Would this be tetraphsophorus tri sulfide?arrow_forwardDon't used Ai solutionarrow_forwardBenzene-toluene equilibrium is often approximated as αBT = 2.34. Generate the y-x diagram for this relative volatility. Also, generate the equilibrium data using Raoult’s law, and compare your results to these.arrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning