Principles of Foundation Engineering
9th Edition
ISBN: 9780357684832
Author: Das
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.18P
(a)
To determine
Find the friction angle of the sand.
(b)
To determine
Find the deviator stress at failure condition.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shear stress on the failure plane, at failure were determined to be 6100 psf and 4600 psf, respectively.
a. Determine the angle of internal friction of the sand?
b. Determine the angle of the failure plane?
c. Determine the maximum principal stress?
Please answer this asap. For upvote. Thank you very much
2. A triaxial shear test was performed on a well-drained sand
sample. The normal stress on the failure plane and the shear
stress on the failure plane, at failure was determined to be
6,300 psf and 4,200 psf, respectively.
a. Determine the angle of internal friction of the sand.
b. Determine the angle of failure plane.
c. Determine the maximum principal stress.
Friction angle of dry sand is 35°. In a direct shear test on this sand, a normal stress of
150kPa was applied. What shear stress will cause the failure?
(a) 150kPa
(b) 50kPa
(c) 78kPa
(d) 105kPa
Chapter 2 Solutions
Principles of Foundation Engineering
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A sand sample is subjected to direct shear testing. Two tests areperformed. For test 1, The sample shears at a stress of 2500 psf whenthe normal stress is 4000 psf.Test 2, The sample shears at a stress of 3500 psf when the normalstress is 6000 psf. Determine the following:a) Angle of Internal frictionb) Value of cohesionc) Compute the shear stress at a depth of 12 ft. if the unit weight ofthe soil is 150 pcfarrow_forwardA sample of dry sand is subjected to a tri- axial test. The angle of internal friction is 36.6°. The minor principal stress is 192 KPa. Compute the effective normal stress in KPa at the point where shear occurs at the failure plane.arrow_forwardA sample of dry sand is subjected to a tri- axial test. The angle of internal friction is 34.8°. The minor principal stress is 240 KPa. What is the major principal stress when the failure occurs in KPa?arrow_forward
- An undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in a triaxial machine. The sample sheared under an additional axial load of 3.35 kN with a vertical deformation of 21 mm. The failure plane was inclined at 50˚ to the horizontal and the cell pressure was 300 kN/m2. i. Draw the Mohr circle diagram representing the above stress conditions, and from it determine: − Coulomb’s equation for the shear strength of the soil, in terms of total stress; − the magnitude and obliquity of the resultant stress on the failure planearrow_forwardShear Stress 2. Please provide proper discussion and illustration. Clear and complete solution please thank you.arrow_forward(a) A dry sand sample is tested in direct shear. The test procedure includes having a normal (compressive) stress of 200 kPa imposed while the sample undergoes shearing. The sample fails when the shear stress reaches 135 kPa. From this data, determine the angle of internal friction f for the soil.(b) A second sample of the same sand is also to be tested in direct shear, but the applied normal (compressive) stress will be 145 kPa. What shear stress is expected to cause the sample to fail?arrow_forward
- A CU triaxial compression test was performed on saturated sand at a cell pressure of 100 kPa. The ultimate deviator stress was 350 kPa and the pore pressure at the peak stress was 40 kPa (suction). Estimate the total and effective stress shear strength parameters.arrow_forwardAn undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in atriaxial machine. The sample sheared under an additional axial load of 3.35 kN with avertical deformation of 21 mm. The failure plane was inclined at 50˚ to the horizontal and the cell pressure was 300 kN/m2. i. Draw the Mohr circle diagram representing the above stress conditions, and from it determine:− Coulomb’s equation for the shear strength of the soil, in terms of total stress;− the magnitude and obliquity of the resultant stress on the failure plane.arrow_forwardc. An undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in a triaxial machine. The sample sheared under an additional axial load of 3.35 kN with a vertical deformation of 21 mm. The failure plane was inclined at 50° to the horizontal and the cell pressure was 300 kN/m². i. Draw the Mohr circle diagram representing the above stress conditions, and from it determine: - Coulomb's equation for the shear strength of the soil, in terms of total stress; - the magnitude and obliquity of the resultant stress on the failure plane. ii. A further undisturbed sample of the soil was tested in a shear box under the same drainage conditions as used for the previous test. If the area of the box was 3600 mm² and the normal load was 500 N, what would you expect the failure stress to have been?arrow_forward
- A = 45 B = 40 C = 15arrow_forwardSoil Mechanismarrow_forwardAn undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in a triaxial machine. The sample sheared under an additional axial load of 3.35 kN with a vertical deformation of 21 mm. The failure plane was inclined at 50° to the horizontal and the cell pressure was 300 kN/m². i. Draw the Mohr circle diagram representing the above stress conditions, and from it determine: - Coulomb's equation for the shear strength of the soil, in terms of total stress; - the magnitude and obliquity of the resultant stress on the failure plane. ii. A further undisturbed sample of the soil was tested in a shear box under the same drainage conditions as used for the previous test. If the area of the box was 3600 mm? and the normal load was 500 N, what would you expect the failure stress to have been?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning